
The MMU Library

Programmer's Manual

Thomas Richter

Copyright
c
 2000,2001 by Thomas Richter, all rights reserved. This publication is freely distributable under

the restrictions stated below, but is also Copyright
c
 Thomas Richter.

Distribution of the publication by a commercial organization without written permission from the author

to any third party is prohibited if any payment is made in connection with such distribution, whether directly

(as in payment for a copy of the publication) or indirectly (as in payment for some service related to the

Publication, or payment for some product or service that includes a copy of the publication �without charge�;

these are only examples, and not an exhaustive enumeration of prohibited activities).

However, the following methods of distribution involving payment shall not in and of themselves be a

violation of this restriction:

1. Posting the publication on a public access information storage and retrieval service for which a fee is

received for retrieving information (such as an on-line service), provided that the fee is not content-

dependent (i.e., the fee would be the same for retrieving the same volume of information consisting

of random data).

2. Distributing the publication on a CD-ROM, provided that

(a) it is reproduced entirely and verbatim on such CD-ROM, including especially this licence agree-

ment;

(b) the CD-ROM is made available to the public for a nominal fee only,

(c) a copy of the CD is made available to the author for free except for shipment costs, and

(d) provided further that all information on such CD-ROM is re-distributable for non-commercial

purposes without charge.

Redistribution of a modi�ed version of the publication is prohibited in any way, by any organization,

regardless whether commercial or non-commercial. Everything must be kept together, in original and

unmodi�ed form.

Disclaimer: This publication is provided �as is� without any warranty of any kind, either

expressed or implied, including, but not limited to, the implied warranties of merchan-

tability and fitness for any particular purpose. Further, the author does not warrant,

guarantee, or make any representation regarding the use of, or the results of the use

of, the information contained herein in term of correctness, accuracy, reliability, cur-

rentness, or otherwise; the entire risk as to its quality and accuracy is assumed solely by

the user. Should the information prove inaccurate, the user (and not the author) assumes

the either cost of all necessary correction. In no event will the author be liable for

direct, indirect, incidental, or consequential damages resulting from any defect or inac-

curacy in this publication, even if advised of the possibility of such damages. Some laws do

not allow the exclusion or limitation of implied warranties or liabilities for incidental or

consequential damages, so the above limitation or exclusion may not apply.

Amiga is a registered trademark, Amiga-DOS, Exec and Kickstart are registered trademarks of Amiga

Intl. Motorola is a registered trademark of Motorola, inc. Unix is a trademark of AT&T.

ii The MuLib Programmer's Manual

Contents

1 Introduction to the MuLib 1

1.1 Supported Hardware . 1

1.2 Basic Concepts . 1

2 MuLib Contexts and Exec Tasks 2

2.1 Looking for Contexts . 2

2.2 Attaching Tasks to Contexts . 3

2.3 Advanced Information about Contexts and Tasks . 4

2.4 Function Reference . 4

3 Working on Contexts 5

3.1 Concepts . 5

3.2 High-level MMU Setup . 6

3.3 Context Locking . 11

3.4 Sharing of MMU Tables . 13

3.5 Modifying More Than One Context at Once . 13

3.6 Function Reference . 16

4 Low-level MMU Setup 18

4.1 De�ning Properties on the Low Level . 18

4.2 Reading the Used and Modi�ed Flags . 19

4.3 Reading and Writing Indirect Descriptors . 19

4.4 Shared Indirect Descriptors . 31

4.5 Function Reference . 31

5 DMA Support Functions 32

5.1 Logical to Physical Translation Functions . 32

5.2 DMA Memory Control Functions . 33

5.3 DMA and Cache Control functions . 35

5.4 Function Reference . 38

6 MMU Exception Handling 39

6.1 Page Fault and Segmentation Fault Handlers . 41

6.2 Page Access Handlers . 49

6.3 Switch and Launch Handlers . 51

6.4 Message Hooks . 51

6.5 Function Reference . 54

7 Building and Adjusting Contexts 55

7.1 Creating a New Context . 55

7.2 Disposing Contexts . 59

7.3 Context Example Code . 60

7.4 Adjusting an Existing Context . 68

7.5 Function Reference . 69

8 Mapping Lists 70

8.1 Creation and Deletion of Mapping Lists . 70

8.2 Mapping Nodes . 71

8.3 Function Reference . 74

CONTENTS iii

9 Miscellaneous Functions 75

9.1 Aligned Memory Allocation . 75

9.2 Public Memory Remapping . 76

9.3 Determinating the MMU Type . 76

9.4 Reprogramming the MMU Temporarely . 77

9.5 Setting the Physical Bus Error Handler . 78

9.6 Function Reference . 78

iv The MuLib Programmer's Manual

1 Introduction to the MuLib

All �modern� Amiga computers come with a special hardware component called the �MMU�. This

abbreviation stands for Memory Management Unit. The MMU is a very powerful piece of hardware

that can be seen as a translator between the CPU that carries out the actual calculation, and the

surrounding hardware: memory and IO devices. Each access of the CPU to fetch or write data from

the hardware or memory is �ltered by the MMU, checked whether the memory region is available,

write protected, can be hold in the CPU internal cache and more. The MMU can be told to translate

the addresses as seen from the CPU to di�erent addresses, hence it can be used to �re-map�, i.e.

mirror parts of the memory without actually touching the memory itself.

A series of programs has been and is available that make use of the MMU: First of all, it's needed

by the operating system to tell the CPU not to hold �chip memory�, as used by the Amiga custom

chips, in its cache; second, several tools re-map the Kickstart ROM to faster 32Bit RAM by using

the MMU to translate the ROM addresses � as seen from the CPU � to the RAM addresses where

the image of the ROM is kept. Third, a number of debugging tools make use of it to detect accesses

to physically unavailable memory regions, and hence to �nd bugs in programs; amongst them is the

�Enforcer� by Michael Sinz. Fourth, the MMU can be used to create the illusion of �almost in�nite

memory�, with so-called �virtual memory systems�. Last but not least, a number of miscellaneous

applications have been found for the MMU as well, for example for display drivers of emulators.

Unfortunately, the Amiga Os did not provide any interface to the MMU so far, everything boils

down to hardware hacking and every program hacks the MMU tables as it wishes. Needless to say

this prevents program A from working nicely together with program B, Enforcer with FastROM or

VMM, and other combinations have been impossible up to now.

This has to change! There has to be a documented interface to the MMU that makes accesses

transparent, easy and compatible. This is the goal of the �mmu.library�. In one word, compatibility.

1.1 Supported Hardware

The MuLib is able to program all MMUs of the Motorola MC68K processor family: The 68851,

which is the external MMU of the 68020 in the form of a coprocessor, and the build-in MMUs of

the 68030, the 68040 and the 68060. Motorola o�ered an external MMU for the 68010 quite a while

ago, the 68451, but up to my knowledge it has never been used in any Amiga model or third-party

expansion. It is unsupported by the library, mainly because it is conceptually very di�erent from

the other four MMU types which, in fact, have been used in the Amiga here and there.

1.2 Basic Concepts

The basic object the MMU library handles is the MMUContext or short Context. It keeps the

complete con�guration of the MMU. If you're familiar with other Amiga hardware components,

one might say that the MMUContext is what the ViewPort is for the graphics engine. Unlike the

ViewPort, however, the Context does not have a documented structure, there are only functions to

operate on Contexts. Since the Tasks handled by Exec really share all their memory, one should

better think of them as the threads of other operating systems, like Unix: They run all in the

same environment and share all the data and all the addresses amongst them. A Context, however,

de�nes a unique address space, and di�erent Contexts run �independent� of each other. There are

means to protect data from one context to be seen from another, or to write-protect them at least.

Shared memory concepts are possible, too. Each Exec Task �belongs to� or �runs as a part of� a

Context, and as Exec schedules Tasks, it automatically schedules Contexts, too. If a Task belonging

to a di�erent Context gains the CPU, a �Context swap� is initiated by the MuLib in addition.

Therefore, a �Context� should be seen as the AmigaOs equivalent of a Unix process.

As soon as the MuLib is loaded, two Contexts will be build. For �rst, the so called �public

Context�. This Context describes the global address space all Amiga applications are part of,

Introduction to the MuLib 1

unless they decide to detach themselves from the public Context. You usually need not to enter

the public Context explicitly; as soon as a new Task is created, it will belong to this Context

anyhow; you furthermore need not to create this Context, it will be build by the library on startup.

The second Context is the �public supervisor Context�. This is the Context �supervisor code�,

mostly system maintenance code, runs in. Note that this is di�erent from the old �Exec world�

where user code and supervisor code shared a common environment. The MuLib enforces a distinct

user/supervisor model. Especially, this means that you may have data available in supervisor mode

which is not available in user mode. As for the �public Context�, you need not to create the �public

supervisor Context� as it will be build by the library anyways on startup. To conclude:

2

Each Exec Task belongs to a MMUContext. Without further calls to the MuLib, it belongs

to the public Context.

2

The MuLib distinguishes between user and supervisor mode accesses.

2

Contexts are schedules as the Tasks belonging to them are scheduled.

2

User mode code runs in the MMUContext of the currently active task. Supervisor code runs

in the supervisor Context of the currently active user Context. The supervisor Context of the

public Context is the public supervisor Context.

2

Contexts come in pairs. Each user mode Context comes with a corresponding supervisor mode

Context. Several user mode Contexts may share one supervisor mode Context, but not the

other way round.

2

On startup, the MuLib will build two Contexts, the public Context and the public supervisor

Context.

From the user's point of view, the Context is �just a handle� to the administration data keeping

all the information required to swap the MMU setup. It does not have a documented structure,

even though it is referred as a struct MMUContext * for all the library functions.

2 MuLib Contexts and Exec Tasks

2.1 Looking for Contexts

The MuLib provides several calls to get handles to Contexts. The following library vectors are

available:

struct MMUContext *ctx;

struct Task *task;

ctx = CurrentContext(task);

This returns the user mode Context the provided Task belongs to. You may pass in NULL to get

the Context the current Task is part of. So to say, CurrentContext(NULL) is pretty much the

MuLib equivalent of FindTask(NULL). The following

struct MMUContext *public;

public = DefaultContext();

however, returns the public user Context. It need not to be identical to the result code of Current-

Context(NULL) because the current task might have been �detached� from the public context

and might run in its own environment. Unlike CurrentContext(), DefaultContext() does not

take any arguments.

2 The MuLib Programmer's Manual

struct MMUContext *ctx,*sctx;

sctx = SuperContext(ctx);

The SuperContext() call returns the corresponding supervisor mode Context for the user mode

Context passed in. Hence,

SuperContext(CurrentContext(NULL));

returns the current supervisor Context, and

SuperContext(DefaultContext());

returns the public supervisor Context. None of these calls can fail, the result code is always valid.

2.2 Attaching Tasks to Contexts

Even though each Exec Task is already part of a Context � the public Context, namely � you

may want to detach a task from the public Context and may run it as part of a di�erent Context.

Especially, since Exec always creates Tasks in the public Context, this is the only way to run a Task

in its private environment: Namely, create a new Context, create a new Task, and attach the new

Task to the Context. The following call will do this for you:

struct MMUContext *new,*old;

struct Task *task;

old = EnterMMUContext(new,task);

The function EnterMMUContext returns the handle to the Context the task belonged to before

EnterMMUContext() has been called. EnterMMUContext() does not only attach tasks to

private Contexts, it is also able to remove a task from one private Context and to attach it to a

di�erent private Context. If the new argument of EnterMMUContext() is set to NULL, the

task will leave its current Context and will be attached to the public Context.

NULL Means Failure. EnterMMUContext() returns NULL in case it failed. It does

not return NULL in case the task was attached to the public Context before; in this

case, it returns the handle to the public Context. Always remember to check for result

codes.

The MuLib provides a short-hand for removing a task from a private Context and to re-attach it to

the public Context. This is

struct MMUContext *old;

struct Task *task;

old = LeaveMMUContext(task);

The call LeaveMMUContext() is fully equivalent to

EnterMMUContext(NULL,..);

It might seem senseless to call EnterMMUContext() with the context argument set to the

public Context because theNULL argument seems to do right the same with less trouble. However,

this is not equivalent. For some of the advanced features of the MuLib, you have to enter a Context

explicitly, regardless of whether you want to detach from the public context or not. EnterMMU-

Context() allocates some internal data structures for the task passed in which are required for

these features, and LeaveMMUContext() will release these structures again. The task will use

the same MMU setup in both cases, but the MuLib will keep some additional structures with the

task if the argument is non-NULL. Nevertheless, no matter why you entered a Context, you have

to call LeaveContext() before your Task shuts down.

MuLib Contexts and Exec Tasks 3

2.3 Advanced Information about Contexts and Tasks

To be able to schedule the Contexts, the MuLib makes use of the tc_Launch() and tc_Switch()

function pointers in the Exec Task structure as soon as you enter a Context � i.e. call EnterM-

MUContext() with a non-NULL argument. This means that these two Exec hooks will be no

longer available for you if you have to make use of the advanced features of the MuLib. They remain

available as long as you never enter a Context, though, and hence the MuLib remains backwards

compatible to those applications that have to play with the two Exec hooks.

The MuLib provides more �exible replacement hooks under the name of �Switch and Launch

Exception Hooks� if you need this feature. Please study the MuLib Exceptions chapter for more

details.

2.4 Function Reference

This chart provides a brief reference to the functions mentioned in this chapter:

Table 1: Context and Task Control Functions

MuLib function Description

CurrentContext() Get a handle to the Context of a given Task

DefaultContext() Get a handle to the public Context

SuperContext() Get the handle to a supervisor Context

EnterMMUContext() Attach a task to a Context

LeaveMMUContext() Run a task as part of the public Context

4 The MuLib Programmer's Manual

3 Working on Contexts

The MuLib provides a series of functions to modify existing Ccontexts, hence to modify the MMU

setup in a easy, straightforward and hardware independent way. All the functions fall in two cate-

gories: Low level and high level calls. The high level calls are very convenient to use, allow rather

abstract modi�cations on the MMU setup, and provide an easy to use interface. However, the

high-level functions are slow and not interrupt-callable; they must be called from within a task, and

they might break a Forbid() state. High-level calls might fail, due to out-of-memory conditions,

but the high-level functions provide means to �lock� the MMU setup and hence to avoid interactions

in critical situations; error handling functions are available as well. Furthermore, calling high-level

functions does not directly cause a modi�cation of the MMU setup. Instead, all modi�cations are

recorded, but not written out to the hardware yet. By one call, the changes are translated to the

lower level.

The low level functions, however, write more or less directly to the hardware, causing an instant

change of the MMU setup. They give no control about this modi�cation whatsoever, and they

require a special preparation step by some high-level calls. Furthermore, the low-level functions are

cumbersome to use and not as handy as the high-level routines, and even slower if large modi�cations

have to be made. However, the low level functions are faster for smaller modi�cations, and fully

interrupt-callable.

If the high-level routines operate on the low-level, a special hook is provided for the low-level

users to get informed if their setup is about to be overwritten, check the �Page Access Exception

Hook� in the �MMU Exception Handling� section below.

3.1 Concepts

A �MMU Page� is the smallest block of memory individually handled by the MMU. Typically, pages

are 1K or 4K large, but the size depends on the Context and on what the hardware is able to o�er.

The 68851 and the 68030 provide page sizes of 256 bytes up to 32K, in powers of two, whereas the

68040 and the 68060 can only handle 4K and 8K pages. Pages start and end always at multiples of

their sizes, i.e. 4K pages start at 4K boundaries. Hence, one should think of the full address space

of 2

32

bits divided into pages of equal size, adjacent to each other whose boundaries are aligned to

multiples of powers of two. The MuLib function

struct MMUContext *ctx;

ULONG pagesize;

pagesize = GetPageSize(ctx);

will return the page size for the Context passed in.

Seek the Size. Never assume a �xed page size, and never hard-code the page size. The

page size will be di�erent on di�erent Amiga models, and it even may vary from machine

to machine, dependent on the requirements of the MuLib and on the con�guration made

by the user.

The MMU is told what to do with each page by a so-called �descriptor�. It's the MuLib which creates

and modi�es these descriptors. However, the way how these descriptors look like depend on the type

of the MMU installed, therefore the MuLib provides an abstraction of the data in the descriptor,

the �Property Flags�. By modifying these �ags, you tell the MuLib how it should setup the MMU

descriptors, and hence �nally what the MMU will do; the job of the MMU is, for example, to tell

the CPU which addresses are allowed to be kept in a cache for faster access. Another job of the

MMU is to �translate� addresses: The addresses a program uses to access its data are called �logical

addresses� because this is what the program logic sees. The MMU translates the logical addresses

Working on Contexts 5

on a page by page basis to physical addresses � �physical� for the simple reason because these are

the true hardware signals that leave the MMU and run as electrical signals to the RAM and ROM

chip and other hardware. Hence, what appears outside of the MMU is di�erent from the addresses

seen by the program inside. Since two applications might run under two di�erent Contexts, the

very same logical address could be translated to two di�erent physical addresses simply because

the MMU setup is di�erent. This is quite common on Unix machines where the program space for

each application starts at address zero; hence Unix depends heavily on the use of a MMU. A very

simple application for this feature of the MMU is to �re-map� the Kickstart ROM into RAM, which

is accessible faster: What happens here is that the logical addresses of the ROM get translated to

the copy of the ROM in RAM, at a di�erent physical location.

Highly Logical. All the addresses used by the MuLib and its function calls are, unless

noted otherwise, logical addresses. Physical addresses appear only at times where the

distinction has to be made, and only for re-mapping a page of logical addresses to a

di�erent physical address.

3.2 High-level MMU Setup

The following high-level call modi�es some of the property �ags of one or more pages:

struct MMUContext *ctx;

ULONG flags,mask,lower,size;

BOOL result;

result = SetProperties(ctx,flags,mask,lower,size,TAG_DONE);

This is a tag-based call, some of the property �ags require some additional tags passed in, check

the list below for further details. As for all tag-based calls, the tag list must be terminated by

TAG_DONE. There is also a non-stack based call for assembly language, named SetProper-

tiesA(). Please check the autodocs for details.

The parameters for this call are as follows: ctx is a handle to the Context, lower and size

specify the logical address range to be setup. Both arguments must be multiples of the page size

or the call will fail since the MuLib checks this requirement explicitly. The mask argument de�nes

which property �ags are to be changed. Each bit set to one transfers the corresponding bit from

the �ags parameter to the MuLib high level abstraction of a MMU descriptor. Finally, �ags is the

bit mask of the �ags to be set or cleared. The following bits are de�ned in mmu/context.h:

MAPP_WRITEPROTECTED This de�nes the speci�ed region to be write-protected. Especi-

ally, if a program attempts to write into the memory area, an access exception will be generated

and the MuLib will call the segmentation fault exception hooks. This is the �agressive� write

protection as it may generate exceptions. The �defensive� version of this Property Flag is

MAPP_ROM.

MAPP_USED Mark the memory as �used�. This is the abstraction of the MMU descriptor �U�

bit which is set by the MMU each time an access to the corresponding page in memory is made.

The MuLib will build the MMU descriptors with the �U� bit set if theMAPP_USED bit on

the high-level is set. Note that reading this bit from the abstraction level byGetProperties()

does not return the actual hardware MMU �ag but only the pre-de�ned value of the �U� bit.

There's usually little reason to mess with this bit with the high-level functions, just leave it

alone. The only advantage of setting the �U� bit in �rst place is that this avoids an additional

memory access of the MMU if the memory is accessed for the �rst time, but this is hardly

noticeable. If you want to check whether a page has been used or not, you must use the

low-level function GetPageProperties() instead. Similary, SetPageProperties() must be

used to set or clear this bit.

6 The MuLib Programmer's Manual

MAPP_MODIFIED Mark the memory as �modi�ed�. This is the abstraction of the MMU �M�

bit which is set on each write access to the corresponding page. Again, this bit only de�nes

whether the MuLib high-level functions should build the descriptors with the �M� bit pre-set,

it will not re�ect the actual state of the true hardware descriptor. For further details, check

the description of MAPP_USED above.

MAPP_CACHEINHIBIT Instruct the MMU to tell the CPU not to keep the corresponding

memory page in cache. This is important if the page contains memory-mapped I/O registers

or memory which is accessed by other hardware in parallel to the CPU, e.g. chip memory or

video RAM. Unlike ordinary memory, these addresses may alter the state without interaction

of the CPU, and a copy of the hardware register in cache might therefore not re�ect the true

state.

MAPP_SUPERVISORONLY Each access to the speci�ed pages from user code will generate

an access fault and will run the segmentation violation exception hooks. This is currently

implemented by checking whether the Context is a user or a supervisor context, and marking

the pages as invalid for user Contexts. Even though the 68040 and the 68060 MMUs o�er a

separate �supervisor only� bit, it is currently not used by the library for consistency to the

68030 and 68851 which do not o�er this feature.

MAPP_USERPAGE0 Set the user page attribute 0. The user page attribute of a page appears

as hardware signal at an output line of the CPU and can therefore be used for special hardware

purposes. However, there is currently no Amiga hardware which uses this feature, hence just

leave this bit alone. This bit is ignored by the 68030 and the 68851 anyways.

MAPP_USERPAGE1 Set user page attribute 1. As for the MAPP_USERPAGE0 bit, this

is a special hardware feature only available for the 68040 and 68060, and which is currently

not made use of. Just leave this bit alone.

MAPP_GLOBAL The memory region is shared between di�erent contexts. The MuLib makes

currently no use of this �ag, and it is available for the 68040 and the 68060 only. Setting this

bit on a 68030 or 68851 driven system is ignored.

MAPP_BLANK The speci�ed address range is not mapped by the hardware at all, it does

not contain memory nor I/O registers. If this bit is set, read and write accesses to this

area are quietly tolerated and ignored, mainly to work around faulty software and to avoid

exceptions. This works currently by re-mapping the speci�ed range to a blank �dummy� page

which is elsewhere in memory. Since MAPP_BLANK cannot generate exceptions, this is

the �defensive form� of MAPP_INVALID access control.

MAPP_SINGLEPAGE Tells the MuLib that it must build one hardware descriptor for each

page in the speci�ed region. Especially, this will turn o� certain optimizations the MuLib

would have taken to preserve memory, as for example sharing of descriptors. This bit is a

must if you need proper access information in the form of the �used� and �modi�ed� bits, and

it is a must if you want to operate on the MMU descriptors by means of the low-level functions,

i.e. GetPageProperties() and SetPageProperties.

Be Prepared for Low-Level. Accessing MMU descriptors by means of the low-level

functions requires a preparation step, namely, setting theMAPP_SINGLEPAGE

bit using the high-level function. This will not only inform the MuLib that it should

allow access to the descriptors, it will also ensure that each page gets its own de-

scriptor, hence makes the low-level functions meaningful in �rst place. Needless

to say, MAPP_SINGLEPAGE pages require more memory in general. Do not

outsmart yourself ! Experts might wonder whether this step is really required for

Working on Contexts 7

the 68040 and 68060 MMU which do not implement �early termination descriptors�.

Please feel ensured that it really is.

MAPP_COPYBACK If the speci�ed pages are cache-able, i.e. MAPP_CACHEINHIBIT

is not set, turn on the copy-back cache. This means that writes of the program will not be

written back to memory immediately, but will be bu�ered until the cache entry is required

otherwise. This will cause a quite noticeable speedup. This bit will be ignored by the 68030

and the 68851 which do not implement a copy-back cache.

MAPP_INVALID Mark the speci�ed memory range as invalid. Accessing it by either a read or

a write will cause a segmentation violation exception. If the MAPP_REPAIRABLE bit is

not set, you may ask the MuLib to keep an additional ULONG with the page which will be

passed to the exception hooks to identify the origin of the exception. This long word is speci�ed

by the MAPTAG_USERDATA tag, de�ned in mmu/mmutags.h �le. This property �ag is

the �agressive form� of MAPP_BLANK as it may generate exceptions.

Zero is a Special Number. You are free to mark the �rst � or so to say, �zeroth� �

page in memory as invalid. The MuLib provides a special kludge to allow accesses

to the global system constant AbsExecBase even with the zero page invalidated, and

it will also emulate accesses to valid chip memory in this range. Needless to say that

the emulation is always slower than the real thing. This kludge can be disabled for

special purposes, and the low memory limit is adjustable. Study the �Building and

Adjusting Contexts� section for details. For the experts: You guessed right, this is

how �MuForce� works.

MAPP_REMAPPED Tell the MuLib that the physical address is di�erent from the logical ad-

dress and that the accesses to this page should be redirected to �elsewhere�. The lower argu-

ment to SetProperties speci�es the logical address to be re-mapped, the physical destination

has to be speci�ed by the MAPTAG_DESTINATION tag item, see mmu/mmutags.h.

MAPP_SWAPPED The speci�ed memory area is currently �swapped out� on an external me-

dium like a HD. In case a read or write access to this page is made, the MuLib will generate

a page fault exception and call the �swapper� exception hooks to load the page back into

memory again. If the MAPP_REPAIRABLE bit is not set, you may specify an additional

ULONG which is passed to the exception handlers and which could be used to locate the

block on the external medium. This long word is set by the MAPTAG_BLOCKID tag

item, see mmu/mmutags.h.

MAPP_ROM This is the �defensive� form of MAPP_WRITEPROTECTED bit. The spe-

ci�ed memory region is �simulated� read-only memory, write accesses are silently tolerated but

will not alter the memory. Ideal for Kickstart re-mapping to provide a silent write protection

for the ROM image.

MAPP_SHARED Shares the corresponding de�nition with its parent context, given by MCX-

TAG_SHARE on context creation, see 7.1. This bit is only available for the mmu.library

releases 43 and above, and is ignored for older releases. Unlike MAPP_GLOBAL which

corresponds to a hardware bit for the 68040 and 68060, this is a software driven bit only

which is used for administrational purposes. Additionally, you may give the mmu.library a

mask which properties are to be shared with the parent context. This mask is setup by the

MAPTAG_SHAREMASK tag item and defaults to 0xffffffff, i.e. all properties will be

shared with the parent. In case you do not share a speci�c property, the additional properties

must be binary-or'ed with MAPP_SHARED here. Properties that require an additional

data item likeMAPP_REMAPPED orMAPP_SWAPPED cannot be selectively enab-

led and used together withMAPP_SHARED. They must be either shared from the parent

8 The MuLib Programmer's Manual

completely, i.e. the corresponding bit must be set in the MAPTAG_SHAREMASK, or

must be setup completely separate without MAPP_SHARED. The MAPP_SHARED

property is not available unless the context has been created with MCXTAG_SHARE.

MAPP_TRANSLATED The speci�ed memory region is � probably partially � under control

of the transparent translation registers. Reprogramming the MMU for this memory area

is therefore ignored by the MMU. Even though this sounds complicated, there's currently

no need to care about this bit at all because the MuLib tries to get rid of the transparent

translation registers very early at startup by simulating them by a proper MMU setup instead,

and clearing them afterwards. Hence, you will never �nd this bit set anyhow, and you should

never set this bit manually yourself. Just leave it alone for now.

MAPP_REPAIRABLE By setting this bit you tell the MuLib that you want to be able to

repair an access to an invalid or write-protected page. The MuLib will then try to obtain

the data that was written to the invalid page and will forward this data to the exception

handler, or it will allow the exception handler to provide the data that should be read-in by

the CPU when accessing the invalid page. Hence, by setting this bit, you could emulate some

hardware registers in the speci�ed range by means of a clever exception handler that absorbs

or provides the data for the hardware registers. If this bit is not set, the MuLib will not always

be able to provide the written-out data or to push back data into the CPU pipeline. Instead,

the exception handler must either abort the access, or must swap in a page to allow the

CPU to retry the access. Since the software support for MAPP_REPAIRABLE requires

a lot of work that is not required for virtual memory support, it is recommended to leave

MAPP_REPAIRABLE o� for these occasions.

Repair Service is Expensive. Even though the MAPP_REPAIRABLE bit is a

very powerful feature, it has its price. First of all, access to the CPU pipeline

has to be emulated for most CPUs, which means that this is slow. Furthermore,

the MuLib does not o�er any additional page data for MAPP_REPAIRABLE

pages, hence MAPP_BLOCKID or MAPP_USERDATA are not available.

The �MuForce� debugging tool uses this feature to present the data that was written

out on an access fault, and to push back �dummy� data into the faulty program.

MAPP_IMPRECISE Only meaningful if MAPP_CACHEINHIBIT is set, too, this tells

the 68060 MMU to be a bit �sloppy� on true physical bus errors. Therefore, this bit should be

set only for memory or I/O areas that cannot generate bus errors, but which cannot tolerate

caching. This bit is safely ignored by all other MMUs. Typically, this bit is set for video RAM,

like the native �chip memory� of the Amiga motherboard or the RAM on graphics cards. This

memory is always valid to access, but it cannot be cached because additional circuits like the

blitter operate on the memory, bypassing the CPU.

MAPP_INDIRECT The corresponding page in memory is handled by a descriptor you con-

structed and your code has full control over. The MuLib will just generate a reference to your

hardware descriptor, but will otherwise not care about it. Hardware descriptors should be build

by the BuildIndirect() and de�ned by the SetIndirect() call in a hardware-independent

way, and should be read by GetIndirect() only. A hardware descriptor is always four bytes

long, and must be placed at a long word boundary or even at a cache line boundary � which

is 16 bytes � in case you want to read it back with GetIndirect() later. Its physical address

is speci�ed by the MAPTAG_DESCRIPTOR tag item, de�ned in mmu/mmutags.h. On

access faults, the MuLib will never report your descriptor as the descriptor that caused the

exception, but instead its own �indirect descriptor� that points to your descriptor.

Too Indirect for Beginners. Hardware descriptors are truly powerful because they

are extremely fast. On the other hand, they are very cumbersome to handle, and

Working on Contexts 9

de�nitely an advanced feature. Don't try to mess with them unless you know what

you're doing. Study the �Low Level MMU Setup� chapter for details.

MAPP_BUNDLED The speci�ed memory range is bundled to one single page in memory, repea-

ted over and over again, �lling up the full range. Hence, in a MAPP_BUNDLED memory

region, the same physical memory page is mirrored over and over again to a continuous range

of logical addresses.

MAPP_USER0 This bit is strictly for your purposes. The MuLib will completely ignore this

bit, and will keep it for you. It does not correspond to any hardware function of any MMU

at all � don't mix this with the �user page attribute 0�. These user attributes, along with all

other high-level attributes, are also visible for the low-level functions GetPageProperties()

and related.

MAPP_USER1 Reserved for public use, similar to MAPP_USER0.

MAPP_USER2 Again kept free for you.

MAPP_USER3 And another one for you.

MAPP_NONSERIALIZED Only signi�cant if MAPP_CACHEINHIBIT is set, too, and

only read by the 68040 MMU, safely ignored by all others. This bit tells the 68040 that it

may re-order accesses to the speci�ed memory range in order to speed up the bus throughput.

Hence, accesses on the physical bus may appear in a di�erent order than the accesses made by

software. This bit should not be set for true hardware mapped I/O, but a typical application

would be video RAM like the native �chip memory� or the RAM on graphics boards. It can't

be cached because custom hardware like the blitter accesses it by means of DMA, but the

order of accesses does not matter.

MAPP_IO The corresponding memory range are memory mapped I/O registers. This bit has

no in�uence on the MMU setup at all, but it is read by tools like �MuForce� or the �disas-

sembler.library� to avoid accesses to this �memory� for hex dumps or disassembling. Custom,

non-auto-con�guring hardware should have this bit set to inform these tools that they should

keep their hands o�.

The counterpart of SetProperties() is the GetProperties() function: It returns the property

�ags for a given logical address:

struct MMUContext *ctx;

ULONG flags,address;

flags = GetProperties(ctx,address,TAG_DONE);

Unlike SetProperties(), the address need not to be aligned to a multiple of the page size. However,

the returned properties will only depend on the page the address belongs to. Additionally, the

following tags can be passed in, de�ned in mmu/mmutags.h:

MAPTAG_DESTINATION Requires a pointer to void * as argument. This pointer is �lled in

with the corresponding physical address of the logical address passed in, regardless of whether

remapping, i.e. MAPP_REMAPPED, is enabled or not.

MAPTAG_BLOCKID Requires a pointer to a ULONG as argument. This ULONG is �lled

in if the page is swapped out, returning an identi�er which was selected by SetProperties().

Only available for MAPP_SWAPPED pages.

10 The MuLib Programmer's Manual

MAPTAG_USERDATA Requires a pointer to aULONG as argument which will be �lled with

the �cookie� of MAPP_INVALID pages, if they have been set by SetProperties() in �rst

place.

MAPTAG_DESCRIPTOR Takes a pointer to a ULONG * as argument which is �lled for

MAPP_INDIRECT pages with the pointer to the true physical hardware descriptor used

to handle this page.

The returned �ags value re�ects the MMU properties in the high-level of the MMU setup;

especially, the MAPP_USED andMAPP_MODIFIED bits do not correspond to the state of

the MMU hardware �U� and �M� bits, but just for the pre-selected value of these bits in case the

MuLib has to rebuild parts of the hardware level.

3.3 Context Locking

Since more than one Task could try to operate on the same Context at once, you are highly recom-

mended to �lock� the context before you proceed and modify its setup by SetProperties(). Even

though the MuLib itself keeps care that its data structures remain valid even in this situation, it

might be desirable to group Context operations and to protect them by granting exclusive access to

the Context. This is done by

struct MMUContext *ctx;

LockMMUContext(ctx);

After having modi�ed the high-level of the Context by calling SetProperties(), the changes must

be loaded to the hardware. This step is similar to the MakeVPort() call of the graphics.library:

It translates the abstraction layer to the true hardware data. One single call is enough to proceed:

struct MMUContext *ctx;

BOOL result;

result = RebuildTree(ctx);

Like SetProperties(), this call may fail due to out of memory conditions. In this case, the hardware

layer of the MMU setup remains unchanged, but all the modi�cations in the software layer remain

active, and remain marked as �changed�. Hence, if RebuildTree() is called again later, and if more

memory is available, your changes will become active. Once you're done, you should unlock the

Context again to allow other tasks to modify it:

struct MMUContext *ctx;

UnlockMMUContext(ctx);

Since SetProperties() and even RebuildTree() may fail, you are in trouble in case the system is

low on memory since it would leave you alone with a half-correct MMU setup which can't be com-

pleted, and, in worst case, can't even restored to the original setup since a second SetProperties()

call used to restore the original settings could fail as well. Luckily, the MuLib provides functions to

help you in this situation. The idea is to �rst make a backup of the current MMU setup, using

struct MMUContext *ctx;

struct MinList *ctxl;

ctxl=GetMapping(ctx);

Working on Contexts 11

then to run all modi�cations, �nally to call RebuildTree(). If something goes wrong, one single

call is enough to restore the orignal MMU setup, namely

struct MMUContext *ctx;

struct MinList *ctxl;

SetPropertyList(ctx,ctxl);

Unlike SetProperties(), the SetPropertyList() call cannot fail. It uses the backup made before

to restore the MMU setup. It cannot be used, though, to restore a MMU setup which has been

translated into a true hardware table already and which is loaded into the MMU, even if you call

RebuildTree() explicitly after SetPropertyList(). The reason is that the high-level functions

keep so called �dirty bits� of the MMU table. These bits are never visible from the outside, but are

set for each memory region you modi�ed with SetProperties(), and cleared on a RebuildTree().

This allows the rather slow RebuildTree() call only to re-compute the parts of the MMU table

which have been modi�ed; re-computing the full MMU setup would take too much time and would

drastically reduce performance. However, SetPropertyList() does not only restore the high-level

MMU setup, it also restores the dirty bits. To be more speci�c, calling RebuildTree() after

SetPropertyList() would not notice that a complete restauration of the MMU setup has taken

place, and would leave the low-level MMU setup alone.

Finally, regardless of whether you made use of the backup or not, it must be released by

struct Context *ctx;

struct MinList *ctxl;

ReleaseMapping(ctx,ctxl);

You can use a backup only once for one single SetPropertyList() call. Afterwards, the backup

will be �empty� and cannot be used anymore. Nevertheless � regardless of whether SetProper-

tyList() was called or not, you have to tell the MuLib that you do not require it anymore. This is

done by ReleaseMapping().

To conclude, a proper and safe MMU modi�cation, including proper error handling, would look

like this:

struct MMUContext *ctx;

struct MinList *ctxl;

BOOL fine = TRUE;

/* Lock the context */

LockMMUContext(ctx);

/* make a backup */

ctxl=GetMapping(ctx);

/* got a backup? */

if (ctxl) {

/* Now run all the modifications */

fine = SetProperties(ctx,...);

if (fine) {

/* etc, etc... */

fine = SetProperties(ctx,...);

}

12 The MuLib Programmer's Manual

/* and finally, build the hardware table */

if (fine) {

fine = RebuildTree(ctx);

}

/* Uhoh, something went wrong! */

if (!fine) {

/* Restore the previous setup */

SetPropertyList(ctx,ctxl);

}

} else fine = FALSE;

UnlockMMUContext(ctx);

ReleaseMapping(ctx,ctxl);

3.4 Sharing of MMU Tables

The special property MAPP_SHARED signals the MuLib that the property of this speci�c

memory range comes from another, the parent context. To be able to use this property, your con-

text must have been created with the tag MCXTAG_SHARE, cf. section 7. The properties

are then borrowed from the parent, and updated whenever the parent gets updated, i.e. whenever

RebuildTree() is called on the parent context. However, this property sharing works only automa-

tically for the high-level interface, low-level calls discussed in section 4 are not covered by table sha-

ring. Especially, the low-level call SetPageProperty() of a parent page does not modify any child

contexts, and the low-level SetPageProperty() simply ignores theMAPP_SHARED attribute

at all. Similar, GetPageProperties() will not return any useful MAPP_SHARED attribute

to indicate page sharing. This is because even though the MuLib shares the properties between

the contexts, it does not share the raw hardware descriptors between the di�erent contexts. It only

propagades high-level �ags from the parent to the child whenever necessary.

Another caveat about the MAPP_SHARED property is that you must disable it explicitly

on your child context to dispatch from the parent, i.e. to enforce your own page settings for

your context. Hence, the mask parameter of the SetProperties() call should always include

MAPP_SHARED or the resulting page settings might be very di�erent from what you expect

� the MuLib will ignore your selection at all and will continue to use the parent's properties. After

all, this is what MAPP_SHARED is all about.

The MAPTAG_SHAREMASK can be used to selectively alter only some �ags of the pa-

rent context, but to carry over others. To give an example, a MAPTAG_SHAREMASK

of ~MAPP_COPYBACK selectively disables the forwarding of the copyback-caching �ag from

the parent to the child. A property �ag of MAPP_SHARED | MAPP_COPYBACK will

enable, and a property �ag of MAPP_SHARED alone will disable copyback-caching, indepen-

dently of the parent settings. The default of the share mask is ~0, i.e. all properties of the parent

will be carried over.

3.5 Modifying More Than One Context at Once

Please recall that the MuLib keeps user and supervisor accesses separate, and that each user Context

comes with a corresponding supervisor Context. This means speci�cally that you sometimes want

to modify two or more Contexts at once, typically the user Context and its supervisor Context. If

handled the naive way, several race conditions could result: For example, consider that your program

locks the user Context �rst, and then locks the supervisor Context. Assume further that another

Working on Contexts 13

program attempts to modify the two Contexts simultaneously, but locking the supervisor Context

�rst and the user Context later. This could yield to the classical �deadlock� situation where your

program keeps the user Context locked but can't run on because the supervisor Context is obtained

by the second Task, and the second Task can't continue because it tries to obtain the user Context

which is already locked by your task. Therefore, if you want to lock more than one Context at once,

you absolutely must lock the complete Context list before you lock individual Contexts. This is done

by the following call:

LockContextList();

Nevertheless, you need to lock the individual Contexts afterwards. The Context list lock is released

by

UnlockContextList();

when you're done. Both calls do not take any arguments.

A second problem is caused by the RebuildTree() call: If you want to compute the low-level

MMU setup for two Contexts, it might happen that the �rst RebuildTree() succeeds, but the

second call fails due to lack of memory; an attempt to restore the �rst tree could fail as well, ma-

king it impossible to restore the former setup. To help you in this situation, the MuLib provides

a function that rebuilds several MMU setups at once such that either all of them are rebuild suc-

cessfully, or none of them has been touched. This call comes in two forms, one parameter based

form RebuildTreesA() which takes a NULL-terminated array of Context pointers, and a stack

based call RebuildTrees() whose last argument is set to NULL, similar to a tag list. The last

form is conveniently used from high-level languages like C.

struct MMUContext *ctx,*sctx;

BOOL fine;

fine = RebuildTrees(ctx,sctx,NULL);

would, for example, rebuild two MMU setups at once. The following example code shows how to

modify safely the property �ags for the public Context and its supervisor Context at once:

/*

* SetCacheMode: Modify the cache mode of the address range

* "from" to "from+size-1" in both the

* default context and the default supervisor

* context.

* "flags" defines the new properties,

* "mask" which bits are to be altered.

*

* Returns a dos-type error code.

*

* Taken from the "MuSetCacheMode" sources, (c) Thomas Richter.

*

*/

#include <exec/types.h>

#include <exec/lists.h>

#include <dos/dos.h>

#include <mmu/context.h>

#include <utility/tagitem.h>

14 The MuLib Programmer's Manual

#include <proto/exec.h>

#include <proto/dos.h>

#include <proto/mmu.h>

int SetCacheMode(ULONG from,ULONG size,ULONG flags,ULONG mask)

{

struct MMUContext *ctx,*sctx; /* default context, supervisorcontext */

struct MinList *ctxl,*sctxl; /* backups */

ULONG psize; /* the page size */

int err;

ctx=DefaultContext(); /* get the default context */

sctx=SuperContext(ctx); /* get the supervisor context for this one */

psize=GetPageSize(ctx); /* get the page size */

/* Now check for proper alignment of the data passed in */

if (size & (psize-1)) {

Printf("The given size 0x%lx is not divisible "

"by the page size 0x%lx.\n",size,psize);

return ERROR_BAD_NUMBER;

}

if (from & (psize-1)) {

Printf("The given address 0x%lx is not divisible "

"by the page size 0x%lx.\n",from,psize);

return ERROR_BAD_NUMBER;

}

/*

** Page sizes of the user and the supervisor context are always

** identical.

*/

/* Lock first the context list, then the two contexts */

LockContextList();

LockMMUContext(ctx);

LockMMUContext(sctx);

err=ERROR_NO_FREE_STORE;

/* Make backups of the MMU setup */

if (ctxl=GetMapping(ctx)) {

if (sctxl=GetMapping(sctx)) {

err=0;

/* Set the flags in the user context */

if (!SetProperties(ctx,flags,mask,from,size,TAG_DONE)) {

err=ERROR_NO_FREE_STORE;

Working on Contexts 15

}

/* and just the same in the supervisor context */

if (!SetProperties(sctx,flags,mask,from,size,TAG_DONE)) {

err=ERROR_NO_FREE_STORE;

}

if (err==0) {

/*

** If everything is fine so far, rebuild the trees

** to write this setup directly into the hardware

*/

if (!RebuildTrees(ctx,sctx,NULL)) {

err=ERROR_NO_FREE_STORE;

}

}

/*

** Uhoh, something went wrong!

** We better restore what we found before!

*/

if (err) {

SetPropertyList(ctx,ctxl);

SetPropertyList(sctx,sctxl);

}

/*

** Now release the backups. Even if we used them,

** this step *IS* required.

*/

ReleaseMapping(sctx,sctxl);

}

ReleaseMapping(ctx,ctxl);

}

/* Unlock the contexts and the list */

UnlockMMUContext(sctx);

UnlockMMUContext(ctx);

UnlockContextList();

/* and say goodbye! */

return err;

}

3.6 Function Reference

Here's again a quick function reference for all the calls introduced in the last section:

16 The MuLib Programmer's Manual

Table 2: High Level MMU Tree Control Functions

MuLib function Description

GetPageSize() Return the size of a MMU page in bytes

SetProperties() De�ne property �ags for one or more pages

GetProperties() Return the property �ags for one address

LockMMUContext() Lock a context from modi�cation

UnlockMMUContext() Release a context lock

AttemptLockMMUContext() Attempt to lock a context

LockContextList() Lock the list of contexts

UnlockContextList() Release the list lock

AttemptLockContextList() Attempt to lock the context list

RebuildTree() Build the low-level from the high-level data

RebuildTrees() Rebuild more than one tree at once

GetMapping() Make a backup of the MMU setup

ReleaseMapping() Release a MMU setup

SetPropertyList() Replace the high-level setup by a backup

Working on Contexts 17

4 Low-level MMU Setup

High-level MuLib functions have the disadvantage that they cannot be called from interrupt or

supervisor code. Low level functions can, but because they are interrupt-callable, they provide no

locking mechanism. If some other Task decides to overwrite the low-level MMU table � let it be

by calling the high-level function RebuildTree() or by modifying the low-level directly � then

your changes are lost. However, there is at least a way to handle the �rst situation by means of

the so-called �page access exception� which will be described below. Another restriction is that

the low-level functions require a special preparation step, namely the MAPP_SINGLEPAGE

property �ag must be set by means of the high-level functions, and the MMU tree must be rebuild

afterwards. Furthermore, the low level functions operate only at one page a time.

4.1 De�ning Properties on the Low Level

The function

struct MMUContext *ctx;

ULONG flags,mask,page;

BOOL result;

result = SetPageProperties(ctx,flags,mask,page,TAG_DONE);

is the low-level equivalent of the SetProperties() call. All parameters and �ags are identical,

except that no address range can be speci�ed, but only a single page at a time will be modi�ed.

Its logical address must be passed in as the page parameter. As for SetProperties(), it must be

aligned to a multiple of the page size or the call will fail. Accordingly,

struct MMUContext *ctx;

ULONG address,flags;

flags = GetPageProperties(ctx,address,TAG_DONE);

will read the �ags from the low-level MMU descriptor. As a special case, the MAPP_USED and

MAPP_MODIFIED properties re�ect the state of the �U� and �M� bits of the true hardware

descriptor and tell you whether this page has been accessed, or has been written to since the last

time you cleared this bit.

Low, but not Ground Level. The SetPageProperties() and GetPageProperties()

function both directly modify the MMU hardware descriptors, but especially the lat-

ter does not really read the hardware descriptor except for the MAPP_USED and

MAPP_MODIFIED �ags. This is because most of the property �ags do not corre-

spond to features the MMU o�ers directly, but have to be emulated by software on some

or all of the members of the MC68K MMU series. This makes little di�erence as long as

you keep in mind that you must not hack on the MMU directly.

Both functions are interrupt-callable, and neither break a Forbid() nor a Disable() state. Hence,

it is safe to call these from critical code if you have to. Remember, however, that both calls require

the enabling of MAPP_SINGLEPAGE on the high level.

Low Level, no Sharing. The mmu.library does not provide sharing of low-level MMU

descriptors. If you modify a descriptor of the parent (shared) context by SetPagePro-

perties(), the corresponding changes are not forwarded to the childs (sharing contexts)

automatically. Even though the properties are shared from the parent, the MMU descrip-

tors are not, such that each child gets a separate MMU tree and uses its own separate de-

scriptors. If you read a page descriptor of a child whose properties have been shared from

18 The MuLib Programmer's Manual

the parent, you �nd the MAPP_SHARED �ag set; the remaining property �ags are

the combination of the parent properties, �ltered by theMAPTAG_SHAREMASK,

binary or'ed with the properties of the child.

4.2 Reading the Used and Modi�ed Flags

The MMU keeps two special �ags within its descriptors: The MAPP_USED �ag that is set to

one whenever a program touches the page that is controlled by this descriptor, let it be by reading

or by writing; and the MAPP_MODIFIED �ag, which gets set by every write access into the

page. Hence, MAPP_MODIFIED indicates that the page contents have been altered.

Both �ags are available as low-level and as high-level �ags, i.e. they may be used as input �ags to

SetProperties() and SetPageProperties(). However, the consequences are a bit di�erent: You

cannot clear either �ag with high-level calls. That is, even though if the mask parameter of SetPro-

perties() includes one of the two �ags, the low level �ag is at most set, but never cleared. Since the

aim of the two �ags is to drive a virtual memory system and to determine which pages have been

touched and must be written out, the above rule prohibits inadequate modi�cations of important

state information that could cause data loss � clearing a MAPP_MODIFIED �ag of a page

that was, indeed, modi�ed would cause that a possible virtual memory system would not write back

the page to a swap device and hence, page modi�cations would be forgotten. Similar,GetProper-

ties() does not check the hardware MMU descriptors to �nd out about the MAPP_USED and

MAPP_MODIFIED states. If one of the two �ags are returned as enabled, all you know is that

the next RebuildTree(s)() will set the corresponding bits in the hardware level descriptors, but if

the �ags are cleared, no information about the hardware level has been obtained at all.

This is substancially di�erent for the low-level calls. Both, SetPageProperties() and GetPa-

geProperties() have full control over both �ags, and can set and clear these two. Hence, do not

play with the two bits uncarefully, it may damage a virtual memory system. Therefore, a virtual

memory system could read both �ags, and then clear them after storing their state in an internal

database. Since is this a very frequent operation, the MuLib o�ers one specialized function that

performs both steps in one:

struct MMUContext *ctx;

ULONG lower,flags;

flags = GetPageUsedModified(ctx,lower);

This call returns the currentMAPP_USED and MAPP_MODIFIED �ags of the MMU page

that contains the address lower. It does not return any other �ags. Furthermore, it clears both �ags

in the MMU descriptor. Hence, the caller must store the result of this call in an internal database;

for example, it could increment used and modify-counters dependent on which �ag is found active.

Altered, but not touched? Never ever attempt to set the MAPP_MODIFIED �ag

without the MAPP_USED �ag. This indicates an illegal page state � namely, a

state of a page that got modi�ed without ever being touched. The MC68K MMUs react

rather allergic against this combination and may lock up the system.

4.3 Reading and Writing Indirect Descriptors

The functions SetPageProperties() and GetPageProperties() are much faster than a Re-

buildTree() call of the high-level functions, but are still not the optimum of speed. As long as you

have to handle small chunks of memory, indirect descriptors will work better, but o�er less control

and are much more cumbersome to handle.

Low-level MMU Setup 19

Powerful, but Dangerous. One of the important drawbacks of indirect descriptors to keep

in mind is that they do not support DMA operation. Especially, never ever read or

write memory which is mapped by indirect descriptors by means of Os I/O functions

like Read(), Write() or DoIO(). The MuLib will not be able to handle some cache

related race-conditions for them. If you want to access them, make a copy of the page

contents �rst and run the I/O operations on the copy.

An indirect descriptor works as follows: Typically, the MuLib designs all the hardware descriptors

for the MMU itself, but for indirect descriptors, it will just place a reference in the MMU which

points to a descriptor you have to provide. By modifying your descriptor, you get direct control

over the MMU without much overhead. The descriptor is just a long word aligned long word or a

long word in a cache line aligned = 16 byte aligned array which is a multiple of cache lines long.

The latter, more restrictive alignment restriction holds in case you need to read back the descriptor

later using GetIndirect(). In principle, you could setup this descriptor yourself, but how this

must be done depends of course on the Amiga the code runs on. The MuLib helps you here by

o�ering functions to pre-calculate the required descriptors to abstract from the hardware. Second,

you could also place the descriptors in memory yourself, but due to some �rmware features of several

members of the 68K series, you'd better not try this yourself. The MuLib knows very well the race

conditions that show up here, and knows how to handle them. Last but not least, you should also

avoid reading the descriptors yourself, just for the same reason: A simple read access to a hardware

MMU descriptor has some side-e�ects the MuLib has to keep in mind.

The �rst step in building an indirect descriptor is to allocate four bytes of memory, with proper

alignment. The Os function AllocMem() is �ne as long as you only want to write descriptors

because it already o�ers long word alignment. For the more restrictive alignment requirement of

GetIndirect(), you need to call the MuLib function

void *array;

ULONG size;

array = AllocAligned(size,MEMF_PUBLIC,16);

where size is divisible by 16 as well. More about this call is in the �Miscellaneous Functions� chapter.

The second step is to obtain the physical address of the logical address you got from Alloc-

Mem(). In most cases, both will be identically, but they need not to be. The function

struct MMUContext *ctx;

ULONG oldflags;

void *logical;

oldflags = PhysicalLocation(ctx,&logical,sizeof(ULONG));

/* "logical" contains now the physical address */

will do this for you. The third step is to pre-calculate all the descriptors you plan to make use of.

Since indirect descriptors are used for time-critical applications, this step avoids the overhead in the

later usage. The following call will do this:

struct MMUContext *ctx;

ULONG mask,oldflags;

ULONG address,flags,descriptor;

descriptor = BuildIndirect(ctx,address,

(flags & mask) | (oldflags & (~mask)));

20 The MuLib Programmer's Manual

As always, this function requires the Context in the ctx argument. However, unlike SetPagePro-

perties() or SetProperties(), only a subset of the property bits are provided. Especially, there is

no MAPP_REMAPPED bit. This is handled di�erently. Instead of specifying a logical address

and � possibly � a di�erent physical address, you need to specify the physical address itself. If

it is identical to the logical address, no re-mapping will occur, and if its not, the access will be re-

directed to the speci�ed page. Again, this address must be a multiple of the page size. The physical

address should be obtained from the logical address by calling the PhysicalLocation() function,

as before, even in case you do not plan to re-map it. It is good to write software in a defensive way,

and it might happen that the memory you allocated in �rst place for the page has been re-mapped

already. Since BuildIndirect() does not o�er a mask parameter, the above example call shows

how to mask in the desired �ags yourself, and how to carry over parts of the old �ags.

Depending on the hardware, only a subset of the following property bits is supported:

MAPP_WRITEPROTECTED The page will be write protected. Writes to this area will cause

a segmentation fault.

MAPP_USED The �U� bit of the descriptor will be set. The MMU will set this bit if the page

gets accessed in any way, too.

MAPP_MODIFIED The �M� bit of the descriptor will be set. The MMU sets this bit, too,

on any write access that goes into this page. Due to a hardware feature of some of the 68K

MMUs, never ever set this bit together withMAPP_WRITEPROTECTED and without

MAPP_USED or the MMU might hang.

MAPP_INVALID The page will be marked as invalid. Accessing it will cause a segmentation

violation exception. However, note that the bit MAPP_REPAIRABLE is not availa-

ble as property bit for indirect descriptors itself. You may, however, still ask the MuLib

for the repair service by setting the MAPP_REPAIRABLE bit in the corresponding

MAPP_INDIRECT descriptor pointing to your descriptor. Even though indirect des-

criptors support the user data �eld to some extend, using MAPTAD_USERDATA is

discouraged. This is because the descriptor will not be able to hold all 32 bits of your data,

some of the lower order bits will be required for the purposes of the MMU and are therefore

lost.

MAPP_CACHEINHIBIT The corresponding memory page will not be kept in the CPU cache.

MAPP_IMPRECISE Only available if MAPP_CACHEINHIBIT is set as well, this tells

the 68060 MMU to react a bit sloppy on real bus errors. Ignored and read as zero by all other

MMUs.

MAPP_NONSERIALIZED Again, this is only valid for MAPP_CACHEINHIBIT pages,

and ignored and read as zero by all except the 68040 MMU. It tells the 68040 that it may

re-order accesses to the page to improve performance.

MAPP_COPYBACK Enable the copy-back cache for cache-able pages. This bit is ignored and

read as zero by the 68030 and 68851 MMU.

MAPP_USERPAGE0 Set the �user page attribute 0� CPU output line on accesses of this page.

This is only available for the 68040 and 68060 and ignored and read as zero for the 68030 and

68851. There's currently no Amiga hardware I know of which keeps care about this hardware

line anyhow.

MAPP_USERPAGE1 Sets the �user page attribute 1� CPU control line.

Low-level MMU Setup 21

MAPP_GLOBAL Sets the �global� bit of the descriptor, which is only available for the 68040

and the 68060. It is ignored and read as zero by the 68030 and the 68851. Setting this bit

means that certain specialized instructions will not �ush this descriptor from the MMU cache.

The MuLib writes only descriptors with this bit cleared and does not use these instructions.

It will always �ush descriptors independent of the G bit. There is currently little use of this

bit, so please leave it alone.

Passing in unsupported bits causes the MuLib to ignore these bits. Especially, if you read back

the descriptor later, you might �nd di�erent properties than intended because of missing hardware

support. For example, if you set the MAPP_COPYBACK bit on a 68030 based machine, and

you check the descriptor later, you'll �nd this bit disabled. Especially, note that the following

properties are not supported:

MAPP_REMAPPED is unsupported because you have to pass in the physical destination any-

how.

MAPP_REPAIRABLE is unsupported. However, you still get the same service by setting this

bit �one level up� in the MAPP_INDIRECT descriptor pointing to your new descriptor.

MAPP_SUPERVISORONLY is unsupported. To emulate it, build separate descriptors for the

user and the supervisor Context and set the user descriptor to MAPP_INVALID.

MAPP_ROM is unsupported. However, you are still able to get this feature if you set the

descriptor to MAPP_WRITEPROTECTED and, additionally, set this bit �one level up�

in the MAPP_INDIRECT descriptor.

The result code of BuildIndirect() is either a valid descriptor value, or the special result code

BAD_DESCRIPTOR de�ned in mmu/descriptor.h. Especially, NULL does not indicate an error.

Indirection's Unmasked. You should have noticed that BuildIndirect() does not come

with a mask-type argument. Hence, it is not able to read and alter the current property

�ags of the page you want to address. Instead, you've to read the property �ags yourself,

for example by GetProperties() or PhysicalLocation(), and have to mask-in the

desired �ags yourself. This step is important because it is not clear whether the memory

your page will be kept is is, for example, cache-able or not. Hence, you have to carry

the cache �ags over, as in the example above.

The next step is to set your descriptor to one of the pre-calculated values. This is done by

ULONG *descriptor,address,value;

SetIndirect(descriptor,address,value);

which writes the pre-calculated value into your descriptor. This is also the function which should

be called to exchange descriptors rapidly. The descriptor argument is the physical location of the

hardware descriptor you allocated in the �rst step and whose physical address has been calculated

in the second step. The value argument is the descriptor value calculated by BuildIndirect()

before. Finally, address is the logical address which is covered by this descriptor. In case you want

to re-use the descriptor for more than one logical address, pass in -1L instead as a special case.

Keep Care about the Cache! Unlike the SetPageProperties() call, the SetIndirect()

function does not touch the CPU cache for the page you've modi�ed, mainly for speed

reasons. Therefore, it is absolutely necessary to push back the cache of the page(s)

whose MMU setup is altered by SetIndirect(). The Exec functions CacheClearE()

andCacheClearU() will help you here. If you do not follow this rule, you might observe

22 The MuLib Programmer's Manual

strange e�ects up to complete CPU lockups. The one and only exception to this rule is

that you do not need to push caches if you change the physical destination of the logical

page(s) addressed by the indirect descriptor you installed. This works even for the 68851

and the 68030 whose cache is addressed by logical rather than physical addresses. The

MuLib knows about this special case.

Finally, as a last step, you have to link in your descriptor into the MMU setup. This requi-

res calling either SetProperties() and RebuildTree() or SetPageProperties() with the pro-

perty �ags bit MAPP_INDIRECT set to one and the physical address of your descriptor as

MAPTAG_DESCRIPTOR tag item. You may also add the MAPP_REPAIRABLE and

MAPP_ROM bits as mentioned in the list above. They need to be set here and not in your

descriptor. The MMU will now use your new descriptor, and you're able to re-de�ne the descriptor

very rapidly with the SetIndirect() call.

In case you want to alter more than one indirect descriptor at a time, the MuLib o�ers a function

for re-de�ning a complete array of descriptors at once. This function, SetIndirectArray() is

typically faster than calling SetIndirect() in a loop. Its synopsis is as follows:

ULONG *descriptors,*values,num;

SetIndirectArray(descriptors,values,num);

The �rst argument, descriptors, points to the physical base address of the indirect descriptors to

be �lled in. Note that you must have ensured that this array is really a continuous array of physical

addresses, i.e. it is not possible that this array, even though a continuous range of logical addresses,

is split into several non-adjacent physical memory pages. The PhysicalLocation() function is

able to check this, see the �DMA Support Functions� chapter for more information about this call.

For fragmented memory models, you have to call SetIndirectArray() several times, once for each

fragment.

The values array points to a ULONG array of the MMU �ags that should be �lled in, one

ULONG for each descriptor. The SetIndirectArray() function will, �morally speaking�, copy

the contents of this array to the �rst array, but considering the caveats when modifying MMU

descriptors. The last argument is the number of descriptors to be set and hence the size of both

arrays. Passing zero here is allowed and is a no-op.

As for SetIndirect(), proper cache management is up to yourself. Hence, if you alter the

cache modes of some memory pages, e.g. by changing them from MAPP_COPYBACK to

MAPP_CACHEINHIBIT, it is up to you to push back the CPU caches by means of Cache-

ClearU() or CacheClearE().

Finally, to read an indirect descriptor, use

struct MMUContext *ctx;

ULONG *descriptor;

struct AbstractDescriptor adt;

GetIndirect(ctx,&adt,descriptor);

The ctx argument is the Context, as always, and descriptor is the physical address of the descriptor

to be read. The adt structure need not to be initialized. It is �lled in by the call as follows:

struct AbstractDescriptor { /* defined in mmu/descriptor.h */

ULONG atd_Pointer;

ULONG atd_Properties;

UWORD atd_LowerLimit;

UWORD atd_UpperLimit;

Low-level MMU Setup 23

UBYTE atd_ThisType;

UBYTE atd_NextType;

UWORD atd_reserved;

};

The adt_Pointer �eld is either the physical address the accesses to the page his descriptor is

installed for are redirected to, or the user data if this descriptor is of invalid type. Note that

providing user data for invalid indirect descriptors is discouraged because the MuLib will not be

able to preserve all 32 bits of your data. Otherwise, the adt_Pointer component will be the same

address that was passed in as physical destination to BuildIndirect().

atd_Properties is the set of property �ags read from the descriptor. This need not to be

identical to the properties setup by BuildIndirect(), for two reasons: First, the MMU sets the

�U� and �M� bits as soon as any access or a write access happens to the page or pages handled by

the descriptor. Second, not all MMUs support all properties. Unavailable properties are ignored by

BuildIndirect(), and read as zero by this function.

Please leave all other �elds alone, they are not documented and should not be read, and please

do not try to read the descriptor yourself. First, it is hardware dependent, and second, you would

need to take care about some hardware features and side-e�ects.

Beware of Oddities! The alignment rules for indirect descriptors might seem strange in-

deed. As long as you do not use GetIndirect(), long word alignment is good enough.

Since AllocMem() guarantees even alignment to quad words, ordinary Exec memory

allocations will su�er. However, special cache related considerations when reading the

descriptors require that they do not share cache lines with ordinary program code or

data. Therefore, if you allocate memory for descriptors and you suppose to call GetIn-

direct() on them, make sure that you allocate a multiple of the cache line size, which is

16 bytes, and make sure that the memory block you allocated is aligned to a cache line

boundary. Hence, the MuLib function AllocAligned() is required here. When alloca-

ting a complete array of descriptors, each individual descriptor in this array need not to

be � and will not be � aligned, but the array boundaries have to. Therefore, round the

array size up to the next multiple of 16 bytes, and pass 16 as alignment parameter to

AllocAligned(). Not following this guideline might appear to work most of the time,

butGetIndirect() may return improper data and certain �surprise moments� may show

up. The SetIndirect() calls are not touched by this problem.

The following example program shows how to use indirect descriptors:

/***

** IndirectTest **

** **

** Test indirect page descriptors of the MuLib **

** Release 1.01 **

** **

** (c) 19.03.2000 Thomas Richter **

***/

/*

* Compile and link without startup code.

*/

/* Includes */

#include <exec/types.h>

#include <exec/memory.h>

24 The MuLib Programmer's Manual

#include <dos/dos.h>

#include <mmu/context.h>

#include <mmu/mmutags.h>

#include <mmu/descriptor.h>

#include <proto/exec.h>

#include <proto/dos.h>

#include <proto/mmu.h>

#include <string.h>

/* Protos */

int __saveds main(void);

int RunTests(void);

void DumpData(UBYTE *src,ULONG size);

/* Statics */

char version[]="$VER: IndirectTest 1.01 (19.03.2000) (c) THOR";

struct ExecBase *SysBase;

struct DosLibrary *DOSBase;

struct MMUBase *MMUBase;

/* main */

int __saveds main(void)

{

int rc=25;

/*

** Since we want to link without startup code,

** we need to open the system libraries here...

*/

SysBase = *((struct ExecBase **)(4L));

/*

** Open DOS and MMU

**/

if (DOSBase = (struct DosLibrary *)OpenLibrary("dos.library",37L)) {

if (MMUBase = (struct MMUBase *)OpenLibrary("mmu.library",42L)) {

rc = RunTests();

CloseLibrary((struct Library *)MMUBase);

} else {

Printf("IndirectTest failed: This program "

"requires the mmu.library V42 or better.\n");

rc = 10;

}

/*

** Everything above 64 is a system

Low-level MMU Setup 25

** error code we print over the console.

*/

if (rc>64) {

PrintFault((LONG)rc,"IndirectTest failed");

rc = 10;

}

CloseLibrary((struct Library *)DOSBase);

}

return rc;

}

/* RunTests */

int RunTests(void)

{

struct MMUContext *ctx;

struct MinList *ctxl;

ULONG pagesize;

ULONG *descriptor,*descriptorp;

ULONG values[2];

ULONG props[2];

UBYTE *page,*pagep[2];

int rc=25;

/*

** Get the context we're currently using

** and its page size

** furthermore, allocate a page.

*/

ctx = CurrentContext(NULL);

pagesize = GetPageSize(ctx);

page = AllocAligned(pagesize*2,

MEMF_PUBLIC|MEMF_CLEAR,pagesize);

if (page) {

/*

** Now allocate memory for the descriptor

** this must be long-word aligned, hence

** an AllocMem is fine here.

** However, we need to know the physical location

** of the descriptor.

*/

descriptor = AllocMem(sizeof(ULONG),MEMF_PUBLIC);

if (descriptor) {

/*

26 The MuLib Programmer's Manual

** Compute physical locations

** We do not assume that PhysicalLocation()

** truncates the address. All values are

** long/page aligned longs/pages, hence never cross a

** page boundary.

*/

descriptorp = descriptor;

PhysicalLocation(ctx,(void **)&descriptorp,&pagesize);

/* And now for the pages */

pagep[0] = page;

props[0] = PhysicalLocation(ctx,(void **)&pagep[0],&pagesize);

pagep[1] = page+pagesize;

props[1] = PhysicalLocation(ctx,(void **)&pagep[1],&pagesize);

if (pagep[0] && pagep[1] && descriptorp) {

/*

** Lock the context and make a backup of it.

**

*/

LockMMUContext(ctx);

if (ctxl=GetMapping(ctx)) {

/*

** Pre-calculate the values for the descriptors.

** The first descriptor maps the page to its TRUE physical

** location, the second one to the ROM, write-protecting

** it.

** Note that we need to use the physical addresses here.

**

** MAPP_ROM protection must be archived by setting this

** property bit "one level up".

**

** We furthermore set USED and MODIFIED to avoid unnecessary

** MMU writebacks, and transfer the old properties back

** into the descriptor properties

**

** Note that this call returns BAD_DESCRIPTOR in case

** of an error, not NULL.

*/

values[0] = BuildIndirect(ctx,(ULONG)(pagep[0]),

props[0]|MAPP_USED|MAPP_MODIFIED);

values[1] = BuildIndirect(ctx,(ULONG)(pagep[1]),

props[1]|MAPP_USED|MAPP_WRITEPROTECTED);

Low-level MMU Setup 27

if ((values[0] != BAD_DESCRIPTOR) &&

(values[1] != BAD_DESCRIPTOR)) {

/*

** Install the descriptor

** The first parameter is the physical address

** of the descriptor, the second the

** logical address of the page

** and the last the descriptor to install

*/

SetIndirect(descriptorp,(ULONG)page,values[0]);

/*

** Now install this descriptor

** We set this to MAPP_ROM because we want emulated

** ROM writeprotection.

** This is ignored if the descriptor itself is

** not write protected anyhow.

** We need the physical location of the descriptor

** here.

*/

if (SetProperties(ctx,MAPP_ROM|MAPP_INDIRECT,

MAPP_ROM|MAPP_INDIRECT,

(ULONG)page,pagesize,

MAPTAG_DESCRIPTOR,descriptorp,

TAG_DONE)) {

if (RebuildTree(ctx)) {

/* Everything's fine.

** copy some dummy data into the page

*/

memset(page,'*',(size_t)pagesize);

/* now print parts of it */

DumpData(page,0x10);

/*

** install the other descriptor

*/

SetIndirect(descriptorp,(ULONG)page,values[1]);

/*

** Dump it again. Should be all zero now.

*/

DumpData(page,0x10);

/* Try to write to it. This should

** fail quietly.

*/

28 The MuLib Programmer's Manual

*page = 'A';

/* And dump it again */

DumpData(page,0x10);

/*

** install the old descriptor

** again

*/

SetIndirect(descriptorp,(ULONG)page,values[0]);

/*

** Now reset the context data.

** Disable the MAPP_ROM and MAPP_INDIRECT

** features. This call shouldn't fail or

** we are in trouble

*/

if (SetProperties(ctx,0,MAPP_ROM|MAPP_INDIRECT,

(ULONG)page,pagesize,TAG_DONE)) {

/* Restore the former MMU tree */

if (RebuildTree(ctx)) {

/*

** everything is fine now.

*/

rc = 0;

}

}

if (rc) {

/*

** We're now in trouble.

** The old context couldn't be restored.

** Therefore, we do not release the descriptors

** such that the accesses are at least right,

** and restore the high-level by SetPropertyList()

** below. This will cause a mild memory leak,

** but the system will be fine.

*/

Printf("IndirectTest: Can't restore the context.\n");

descriptor = NULL;

}

} else Printf("IndirectTest: Building the context failed.\n");

} else Printf("IndirectTest: Can't install the "

"new descriptor.\n");

/*

** In case of an error, we restore now the high

Low-level MMU Setup 29

** level of the context.

** This is all we could do.

** The high-level looks then fine again,

** and the low level contains either an

** indirect descriptor which we can't get

** rid of, but which maps ok, or is

** unchanged. The system will be fine

** in both cases.

*/

if (rc) {

SetPropertyList(ctx,ctxl);

}

} else Printf("Can't build the new descriptors.\n");

/* Release the mapping */

ReleaseMapping(ctx,ctxl);

} else rc = ERROR_NO_FREE_STORE;

/*

** Release the MMU Context lock

*/

UnlockMMUContext(ctx);

} else Printf("IndirectTest: Can't perform the logical "

"to physical translation.\n");

/*

** now release the descriptor

*/

if (descriptor) {

FreeMem(descriptor,sizeof(ULONG));

}

} else rc = ERROR_NO_FREE_STORE; /* of if descriptor */

FreeMem(page,pagesize*2);

} else rc = ERROR_NO_FREE_STORE; /* of if page */

return rc;

}

/* DumpData */

void DumpData(UBYTE *src,ULONG size)

{

/*

** A pretty dumb memory dump

*/

Printf("Memory contents at 0x%08lx : ",src);

while(size) {

30 The MuLib Programmer's Manual

Printf("%02lx ",*src);

src++;

size--;

}

Printf("\n");

}

4.4 Shared Indirect Descriptors

If you install indirect descriptors into a parent context and share the corresponding address space

region from various childs, the indirect descriptors describing the shared pages will be shared as

well. This means that the MMU will use the same physical descriptors for the parent and all

childs and modi�cations made on the descriptors will become active immediately for both the

parent and all childs. Note that the situation is somewhat reverse to the GetPageProperties()

and SetPageProperties() functions which do not forward changes from the parent to the childs

automatically.

4.5 Function Reference

The following is again the function reference for this chapter. The PhysicalLocation() call is

explained and listed in the �DMA support functions� chapter below.

Table 3: Low-Level MMU Tree Control Functions

MuLib function Description

SetPageProperties() De�ne the low-level MMU setup

GetPageProperties() Read the low-level MMU setup

GetPageUsedModi�ed() Read and clear U and M �ags

BuildIndirect() Pre-calculate an indirect descriptor

SetIndirect() De�ne an indirect descriptor

SetIndirectArray() De�ne an array of indirect descriptors

GetIndirect() Read an indirect descriptor

Low-level MMU Setup 31

5 DMA Support Functions

All the addresses used by software are logical addresses, they are translated by the MMU before

they arrive at the memory and I/O chips in the form of electrical signals. However, DMA controllers

bypass the CPU and the MMU and address memory directly, of course using physical addresses as

there is no MMU between the controller and the RAM. Additionally, the data in RAM might not

be �up to date� because the most recent data in the cache might not yet be written out to RAM.

Moreover, the CPU might read parts of the I/O bu�er and hence might load obsolete data into the

cache without noting that this data is about to be altered by an external bus master. Therefore,

the Os provides DMA control functions: Namely, to translate logical to physical addresses and to

avoid cache race conditions.

5.1 Logical to Physical Translation Functions

As for most MuLib related calls, two di�erent functions are available to translate a logical to a

physical address: A high-level call which makes use of the data set constructed and controlled

by SetProperties() and GetProperties(), and a low-level call which operates on the MMU

descriptors written by SetPageProperties() and read by GetPageProperties(). Which of the

two calls is apropriate depends on your requirements: The high-level call

struct MMUContext *ctx;

ULONG props,length;

void *address;

props = PhysicalLocation(ctx,&address,&length);

translates a complete address range, starting at the address and length passed it. It returns the

property �ags for this address range. It sets both length and address to NULL in case the

corresponding physical page does not exist.

Consider now a situation where a continuous block of logical addresses is build by remapping two

non-adjacent physical memory blocks in a way that they form one continous memory block. Clearly,

if a continuous logical memory block crossing the border line of the two physical blocks should be

transported by a DMA access, this DMA access has to be broken up into two smaller accesses: The

�rst DMA transfer accesses the logical region up to the end of the �rst physical memory block, and

the second access starts at the �rst byte of the second physical block up to the end of the speci�ed

logical range. More complicated situations may arise if the logical memory range is split into several

non-adjacent physical blocks. For that reason, PhysicalLocation() requires a pointer to the length

of the memory block as well, and might return a smaller length if the full range of logical addresses

is not continuously mapped. In case this happens, you have to transfer the beginning of the block

as returned by PhysicalLocation(), then have to add the returned length to the logical address

passed in in the �rst step, and have to call PhysicalLocation() again until the full memory block

is transfered. The following code segment shows how this might look like:

int RunTransfer(BYTE *base,ULONG len)

{

UBYTE *physical;

ULONG phylen;

ULONG flags;

int error;

while (len) {

physical = base;

phylen = len;

32 The MuLib Programmer's Manual

/* translate the address range */

flags = PhysicalLocation(ctx,(void **)(&physical),&phylen);

if (phylen==0) {

/*

** Generate an error as the user

** tries to read from or write to

** invalid or blank memory.

*/

return INVALID_ARGUMENTS;

}

error = TransferData(physical,phylen);

if (error)

return error;

/* and now go for the next block */

base += phylen;

len -= phylen;

}

/* everything's fine */

return RESULT_FINE;

}

However, the above code segment does not handle any caching problems, and does not lock the

Context in any way. Moreover, the address returned by PhysicalLocation() re�ects the state of

the high-level MMU setup. This setup may di�er from the true physical programming of the MMU

if the high-level setup has been altered, but RebuildTree() hasn't been called yet, or the low-level

setup has been modi�ed by SetPageProperties() bypassing the high-level functions altogether.

Furthermore, as a high-level function, PhysicalLocation() is not interrupt-callable. It is for these

reasons usually not very well suited for DMA device drivers, but might �nd di�erent applications.

The corresponding low-level function

struct MMUContext *ctx;

void *logical,*physical;

physical = PhysicalPageLocation(ctx,logical);

is interrupt-callable and re�ects the current state of the MMU low-level setup, hence will be able to

�see� modi�cations made by SetPageProperties(), but it translates only one address at a time. It

does not check complete memory regions for overlapping. It doesn't keep care about proper cache

handling, and neither about proper handling of page boundaries. Both is up to your code.

5.2 DMA Memory Control Functions

Instead of using PhysicalLocation(), you might want to use some smarter functions, namely

DMAInitiate() and DMATerminate(). This function pair is interrupt-callable, and � addi-

tionally � does not care about high-level modi�cations that have not yet been entered the lower

level by means of RebuildTree(). It doesn't obtain its information from the low-level either, but

uses a data base which is updated from the high-level on each RebuildTree() call. This data

base is guaranteed to be consistent all the time, Context-locking is not required. Since this data

base is a copy from the internal high-level database the MuLib keeps, DMAInitiate() can't see

modi�cations performed on the MMU setup by SetPageProperties() as well.

DMA Support Functions 33

The following function should be run to to initiate a DMA transfer, and to translate logical to

physical addresses:

struct MMUContext *ctx;

void *address;

ULONG length;

BOOL writetoram,ok;

ok = DMAInitiate(ctx,&address,&length,writetoram);

The parameters address and length specify the logical memory block to be transfered, and as

for PhysicalLocation(), the function may not only modify the address parameter to submit the

correct physical page, but may also change the length call in case the logical address range passed in

is not continuously mapped to a single memory block. The write argument must be set to TRUE

for data transports from the DMA device into memory, which would be, for example, a read access

for a harddrive. It must be set to FALSE for transfering data from memory to the device. Each

call to DMAInitiate(), even a call with a FALSE result code, must be matched by one and only

one call to DMATerminate():

struct MMUContext *ctx;

DMATerminate(ctx);

Note that this is di�erent to how CachePreDMA() and CachePostDMA() handle errors or

non-continuous memory blocks.

The following example code show a typical application of DMAInitiate() and DMATermi-

nate(), like in a DMA device driver; the logical address base of the transfer, and the length as well

as the data transport direction are passed in as arguments:

int RunDMATransfer(BYTE *base,ULONG len,BOOL writetoram)

{

UBYTE *physical;

ULONG phylen;

BOOL fine;

int error;

while (len) {

physical = base;

phylen = len; /* translate this address range */

fine = DMAInitiate(ctx,(void **)(&physical),&phylen,writetoram);

if (!fine) {

/*

** Generate an error as the user

** tries to read from or write to

** invalid or blank memory.

*/

DMATerminate(ctx); /* <-- REQUIRED !! */

return INVALID_ARGUMENTS;

}

/* Initiate the DMA cycle */

error = InitiateTheDMA(physical,phylen);

/*

** In this very simple application, we do not

34 The MuLib Programmer's Manual

** multi-thread. In the ideal case, we would be

** free here to initiate the I/O of other

** devices.

*/

WaitForDMACompletion();

/* Terminate the DMA */

DMATerminate(ctx);

if (error) return error;

/* and now go for the next block */

base += phylen;

len -= phylen;

}

/* everything's fine */

return RESULT_FINE;

}

Similar to PhysicalLocation(), the DMAInitiate() and DMATerminate() functions do not

touch the CPU caches. Proper cache handling is up to your code, again.

Comes in Pairs. To note this again: It is very important that DMATerminate() is

called correctly, once and only once for each single DMAInitiate() call, regardless of

the return code. If you don't follow this guideline, all further RebuildTree() calls will

wait forever.

Since there is currently no mechanism how a Task invoking a DMA transfer makes its Context known

to the DMA device � note that most DMA transfers are initiated by a �ling system, and not directly

by the task requiring the data � the ctx parameter of these functions is currently ignored, but

reserved for future applications and re�nements. The DMAInitiate() and DMATerminate()

functions operate always on the data set of the public Context. Therefore, for consistency with

future improvements, please pass in the public Context only.

5.3 DMA and Cache Control functions

Even though DMAInitiate() handles the translation from logical to physical addresses, it does

not keep care about proper CPU cache handling. Two Os functions handle all this in once, Cache-

PreDMA() and CachePostDMA(). Both functions are not part of the mmu.library, precisely

speaking, but are Exec functions instead. Nevertheless, the function code is provided by the MuLib

as soon as it is loaded. Unfortunately, the logic of both functions is a bit tricky, therefore both

should be discussed here again:

APTR logical,physical;

ULONG length,flags;

physical = CachePreDMA(logical,&length,flags);

This function should be called before a DMA operation is started. It's purposes are manifold: First,

it translates the logical address passed in into a physical address, its result code. Second, it checks

for non-continuously mapped memory. In case the data block passed in is not one continuous block

of physical memory, the length is truncated and a smaller length counter is returned. This is why

you have to pass a pointer to the length � the function might alter this parameter. Finally, a �ags

value must be set. The following bits are currently de�ned in exec/execbase.h:

DMA Support Functions 35

DMA_Continue This �ag must be set on the second and all further calls to CachePreDMA()

in case your code came back to complete a truncated DMA transfer.

DMA_ReadFromRAM Set this �ag to indicate that the intended DMA transfer is from RAM

into the external device, e.g. a harddisk write access.

Note that CachePreDMA() does not return an error in case the memory passed in is not mapped

at all. The function will either provide a dummy page for the operation, or will terminate with

the infamous �guru�. Furthermore, no Context parameter is available, which means that Cache-

PreDMA() performs the page translation always on the public Context. As there is currently no

DMA device which is able to keep the Contexts correct � and even very few of them actually call

this function anyhow � this is not really a loss.

Unlike the DMAInitiate() interface, CachePostDMA() must be called only once, namely

after the DMA transfer is complete � or has been aborted. Here is its syntax:

APTR logical;

ULONG length,flags;

CachePostDMA(logical,&length,flags);

The logical parameter has to be set to the initial logical address the DMA transfer has been started

with. Note that you must not pass in a logical address which has been used in some subsequent calls

to CachePreDMA(). The length parameter has to be set to the complete length of the DMA

transfer, as initially intended. Do not pass in a truncated length as returned by CachePreDMA().

Finally, the following �ags are available:

DMA_NoModify Set this �ag in case the memory range hasn't been modi�ed, hence to allow

the code to avoid an unnecessary cache �ush.

DMA_ReadFromRAM This �ag must be set consistent to the CachePreDMA() call, namely

if the data transfer direction is from RAM to the DMA controller.

Here's again an example code which shows how the two function should be called. Its arguments

are as in the examples above.

int RunDMATransfer(BYTE *base,ULONG len,BOOL writetoram)

{

UBYTE *physical,*logical;

ULONG phylen,remaining,flags,iflags;

BOOL fine;

int error;

logical = base;

remaining = len;

error = RESULT_FINE;

/* Set DMA_ReadFromRAM on RAM --> device transfer */

flags = (writetoram)?(0):(DMA_ReadFromRAM);

iflags = (writetoram)?(0):(DMA_ReadFromRAM|DMA_NoModify);

while (remaining) {

phylen = remaining; /* translate this address range */

physical = CachePreDMA(logical,&phylen,flags);

/*

36 The MuLib Programmer's Manual

** We do not get a result code here. Maybe we

** should check whether "physical" is zero.

**/

if (physical==NULL) {

/*

** Generate an error as the user

** tries to read from or write to

** invalid or blank memory.

**

** Note that CachePostDMA() requires

** the initial parameters!

*/

error = INVALID_ARGUMENTS;

break;

}

/* Initiate the DMA cycle */

error = InitiateTheDMA(physical,phylen);

/*

** In this very simple application, we do not

** multi-thread. In the ideal case, we would be

** free here to initiate the I/O of other

** devices.

*/

WaitForDMACompletion();

/* Terminate the DMA */

if (error) break;

/* and now go for the next block */

logical += phylen;

remaining -= phylen;

/* we *MUST* set this flag, though */

flags |= DMA_Continue;

}

/* And finally, only once, the following must be called... */

CachePostDMA(base,len,iflags);

/* but with the initial parameters */

return error;

}

Complicated Memory Access. DMA is a touchy business, even more on the more advanced

members of the MC68K family which implement a copyback cache. Therefore, please

study the example above carefully. Especially consider situations where one continuous

block of logical memory does not refer to one continuous block of physical memory, i.e.

the memory model is fragmented. Failing to call these two functions, or DMAIni-

tiate() due to �speed reasons� is a very poor excuse and might fail for more advanced

applications of the �MMU Majik�.

DMA Support Functions 37

Maybe some background information about the cache problems should be provided: Even though

it seems to be perfectly su�cient to �ush the caches before the DMA transfer to make sure the DMA

device reads proper data, it is not. This is due to the way how the 68040 and 68060 caches work:

They do not bu�er single bytes, but complete �cache lines� which are 16 bytes in a row, aligned to

16 byte boundaries. If the CPU reads from RAM, it typically �lls the full cache line, hence loads 16

bytes instead of just the requested size; and if the CPU has to perform a write access, it �rst reads

a full cache line from memory.

Consider now the following situation: The I/O bu�er to be read from an external DMA device

is not aligned to a 16 byte boundary. Caches are �ushed, initially, but before the DMA transfer

is initiated, another program writes to a memory location directly in front of the I/O bu�er. The

cache line for the written byte overlaps now with the I/O bu�er, and as the CPU reads and writes

full cache lines at once, it will be �lled with data from the I/O bu�er. Let's suppose the DMA

operation completes successfully, hence the I/O bu�er is really �lled with the data read from the

DMA device. However, if the DMA driver code would now run a cache �ush, the �rst bytes of the

I/O bu�er would be overwritten with obsolete data. This is because the �rst bytes of the I/O bu�er

are located in a cache line which has been �lled before the device started reading, by a memory

access which did not even go into the I/O bu�er. Therefore, copyback caching has to be disabled for

the pages at the boundary of the I/O bu�er if the bu�er is not aligned to cache lines. This is what

CachePreDMA() and CachePostDMA() perform.

A clever DMA device could avoid these problems by transfering the initial and �nal bytes of a

non-aligned I/O bu�er by means of programmed I/O, or by copying the initial and �nal page to a

private memory bu�er and perform the DMA from there.

5.4 Function Reference

We conclude with the function reference for this chapter:

Table 4: DMA Support Functions

MuLib function Description

PhysicalLocation() Translate a logical memory block to physical

PhysicalPageLocation() Low-level translate a logical address

DMAInitiate() Initiate a DMA transfer

DMATermiate() Terminate a DMA transfer

Exec function Description

CachePreDMA() Cache handling before DMA start

CachePostDMA() Cache handling after DMA completed

38 The MuLib Programmer's Manual

6 MMU Exception Handling

The MuLib o�ers various sources for exceptions: First, native MMU exceptions, generated by

page faults or segmentation violations. Second, replacement functions for the tc_Switch() and

tc_Launch() function pointers in the Task structure which are no longer available if the Task

has been attached to a Context explicitly, because the MuLib requires these Exec vectors itself.

Third, an exception handler which is called as soon as the high-level MuLib routines try to install a

descriptor on the low-level. All exceptions are installed and removed in the same way, the interface

is identical for all of them. The �rst step is to build an exception hook handle, and to attach it to

a Context; this is done by the following routine:

struct ExceptionHook *hk;

hk = AddContextHook(...);

The call is entirely tag-based, it does not take any ��xed� parameters. The following tag values are

de�ned in mmu/mmutags.h:

MADTAG_TYPE Selects the type of the exception hook to be build. The types will be dis-

cussed in detail below, but to give a brief overview: MMUEH_SWAPPED handlers will

be called in case the CPU accesses a page which has been marked as �swapped out�, i.e. the

MAPP_SWAPPED property �ag is set.

The MMUEH_SEGFAULT handlers are invoked on an access to a MAPP_INVALID

page, or on a write to a MAPP_WRITEPROTECTED page, as well as on a user mode

access to aMAPP_SUPERVISORONLY page. They will not be called on a true hardware

access error because it is not the purpose of the MuLib to handle these. In case you want to

fetch true physical bus errors, you have to replace the default exec bus error handler using the

SetBusError() function described below. Two types of segmentation fault handlers exist,

global and Context speci�c handlers. The MuLib tries �rst to �nd a Context speci�c exception

handler, and if this is not possible, it tries to run a global handler. If this fails, the default

handler will be called, which will, unless replaced by SetBusError()� you guessed right �

run into a �Guru�. MuForce, for example, will install a global exception hook.

TheMMUEH_SWITCH andMMUEH_LAUNCH handlers are task speci�c exception

hooks which replace the tc_Switch() and tc_Launch() pointers of the Task structure which

are no longer available for Tasks that have been explicitly attached to a Context.

Last but not least, the MMUEH_PAGEACCESS handlers are called by the MuLib as

part of the RebuildTree() function when the library touches a low-level MMU descriptor

with a set MAPP_SINGLEPAGE bit. It allows programs that operate on the low-level

by SetPageProperties() and friends to get informed if their MMU setup is about to be

overwritten. MuGuardianAngel makes use of this technique, for example.

More about the speci�c exception classes will be found below.

MADTAG_CONTEXT This selects the Context the exception is supposed to be attached to. A

Context tag item is required for the page fault MMUEH_SWAPPED and the page access

MMUEH_PAGEACCESS handlers. It can be left blank or set to NULL for the task-

speci�c exceptions MMUEH_SWITCH and MMUEH_LAUNCH. One special case is

the segmentation fault handler MMUEH_SEGFAULT: If no Context is given, a global

segmentation fault handler will be installed which will be called from all Contexts provided

no Context speci�c handler is able to handle the exception.

MADTAG_TASK This tag item selects an exclusive task for which the exception hook should

be called. Since more than one task could be attached to a Context at a time, this tag

MMU Exception Handling 39

item can be used to make a selection. However, adding too many task speci�c hooks to one

Context may slow down exception handling considerably. Especially, do not add task speci�c

hooks to supervisor Contexts. This tag item must be set for the MMUEH_SWITCH and

MMUEH_LAUNCH handlers because this exception type is Task speci�c by its purpose;

this tag is optional for all other types.

MADTAG_CODE This tag item must be given for all exception types because it points to the

start address of the exception handler code. Assembly is, even though not required, highly

recommended, to keep exception handling as fast as possible. All exception hooks are called

in the same way:

Register a0 points to the ExceptionData structure for the MMUEH_SWAPPED or

MMUEH_SEGFAULT handlers. It is loaded with a pointer to the PageAccessData

structure for MMUEH_PAGEACCESS handlers. Both structures are explained be-

low. Unde�ned for all other exceptions.

Register a1 loaded with the data you provided with the MADTAG_DATA tag item.

Register a4 for convenience for C style exceptions, this is loaded with the same data as

register a1, namely the user speci�c data provided by MADTAG_DATA.

Register a5 points to your code itself and is available as scratch register otherwise.

Register a6 points to the library base of the MuLib. This is de�nitely not a scratch register.

Registers d0,d1 a0-a1 and a4 and a5 are available as scratches, you may overwrite or modify

them in your handler. In case your code was able to handle the exception, you must set the

�Z� CPU condition code and clear register d0 and exit with an RTS. The MuLib code will

now test the �Z� bit directly for speed reasons. If your code bails out with a clear �Z� bit and

register d0 not equal zero, the MuLib assumes that your exception handler hasn't been able

to handle the speci�c exception and will call the next handler with a lower priority of the same

handler type. The lowest priority handler is always the default handler which will, in worst

case, generate a guru.

MADTAG_DATA Handler speci�c data you may supply. This data will be loaded into the a1

and a4 registers before your code will be called.

MADTAG_NAME A name for the exception hook. Even though the name will be installed

into the hook data, no further use is made of it, and currently can't be made of because the

ExceptionHook structure is intentionally undocumented.

MADTAG_PRI The priority for the exception hook, defaults to 0. Higher priority handlers

are called �rst, lower priority handlers later. Furthermore, for MMUEH_SEGFAULT

handlers, the MuLib �rst tries to call Context speci�c handlers, and re-directs the exception

to the global handlers in case no single Context handler accepted the fault.

The AddContextHook() function returns a handle to an intentionally undocumented Excep-

tionHook structure, or NULL in case it could not setup the hook structure, let it be due to

missing data, or due to lack of memory. Keep the returned �hook� as a �magic cookie� for all further

references.

If a Context hook as been build, it is not yet active. This gives you a chance to prepare and

setup your program until the hook is really ready to be called. The �nal activation step is performed

by

struct ExceptionHook *hk;

ActivateException(hk);

40 The MuLib Programmer's Manual

Unlike AddContextHook(), this function and its counterpart

struct ExceptionHook *hk;

DeactivateException(hk);

are interrupt-callable. One should furthermore note that calls to ActivateException() and De-

activateException() do not nest. The latter, DeactivateException(), absolutely must be called

before the context hook is removed again by

struct ExceptionHook *hk;

RemContextHook(hk);

The RemContextHook() call will release the hook structure and all administration information

required for the hook, and will unlink the hook from the system.

6.1 Page Fault and Segmentation Fault Handlers

In the following, the MMUEH_SEGFAULT and MMUEH_SWAPPED exceptions are dis-

cussed in detail. Both exceptions are generated by the MMU due to an invalid access to a page in

memory. The latter indicates that an attempt was made to access a �swapped out� page, whereas

the �rst usually indicates some kind of software fault. Exception handlers of the �rst kind would

typically print some debug information, whereas the second type should be used to re-load the

�swapped� data from disk. TheMMUEH_SWAPPED exception handlers are only called in case

the faulty access hit aMAP_SWAPPED page, all other MMU related exceptions generate a �seg-

mentation violation� by means of the MMUEH_SEGFAULT handler. The exception handlers

never see faults that are handled by the MuLib transparently, namely accesses to AbsExecBase,

read accesses to valid memory in the zero page, accesses to MAPP_BLANK memory or write

accesses to MAPP_ROM pages.

Not the Real Thing! An emulation can never be as fast as the real thing. Therefore,

avoid these accesses. Make a backup of AbsExecBase to a static variable instead.

For C authors, this is just the matter of chosing the proper prototype �le, contact the

manufacturer of your compiler. Reads from the zero page chip memory no longer happen

if you use a recent Os release, 3.0 or better. Otherwise, use �MuMove4K� to move the

chip memory out of this critical area.

Branch cache faults of the 68060 are also handled by the library and hence do not require any special

care by your code. Furthermore, physical bus errors never reach the MuLib exception handling core

as they are �ltered out immediately. If you must handle them, you have to replace the exec bus

error handler using the SetBusError() low-level function, but the MuLib will otherwise not be

able to help you to handle these exceptions, you are on your own! Due to the tricky nature of these

faults, especially for the 68040, and the rare use of them on the Amiga � I do not know a single

one � I decided not to handle them in the library.

In case a MMU generated �access fault� has been detected the MuLib can't handle itself, it �rst

checks the origin of this exception. This means it checks whether the fault is due to a �swapped�

page, or due to a software fault. It determinates whether the access was made in user or supervisor

mode and loads the Context responsible for this access. It then tries to �nd an exception handler:

2

Try the handler of highest priority �rst. Try Context speci�c handlers �rst, if no Context

speci�c handler can be found, or none of these handlers is able to handle the fault, go for the

global handlers.

2

Check whether this hook is activated or not, skip it if it is deactivated.

MMU Exception Handling 41

2

Check whether the hook is �task speci�c�, i.e. whether theMADTAG_TASK tag was given

at the time the hook was build with AddContextHook(). If the hook is task speci�c, check

whether the faulty task is identical to the task handled by the hook and skip the handler if

this is not the case.

2

As soon as a match has been found, call the routine at the address provided by the MA-

DTAG_CODE tag by loading the registers as listed above. This routine should be written

in assembly, mainly for speed reasons.

2

If the handler returns with a set Z processor bit, return to the MuLib handling code and

proceed as indicated in the �ExceptionData� structure described below.

2

If the handler returns with the Z bit cleared, continue the search. If no useable handler could

be found, run into the Exec default code.

In case you want make use of the exception data structure � and you usually do � please keep in

mind that it is only valid as long as your exception hook runs. This means that you possibly have

to make a copy of it for later use. Remember, too, that you're called in supervisor mode, with all

interrupts disabled. Furthermore, one very important point:

AbsExecBase is a Big No-No. Do never ever access AbsExecBase in MMU exception

code. Even though this access might be tolerated under some conditions, it's the death of

proper exception handling. Furthermore, if your code itself generates an exception, the

MuLib will call the Exec default handler and will not enter your handler recursively. This

means, it will �go guru�. Quite the same goes for write accesses into MAPP_ROM

memory, or accesses into the zero page the library would have to emulate.

If you need SysBase, use either a private copy, or the copy provided in the ExceptionData

structure. If you want to make sure whether a speci�c memory access goes to valid memory, in

order to avoid a double access fault, use the low level functions like GetPageProperties() as they

are safe to be called from within interrupts and exceptions.

The MuLib's Matter. There is no access to the CPU speci�c exception stack frame. Ex-

ception hooks are � and that's just the point about the MuLib � CPU independent.

All data you need is provided in the exception data structure, do not make any assump-

tions about the type of CPU your code runs at, or how the stack frame looks like. This

is the matter of the library.

Finally, we discuss the ExceptionData structure, de�ned in mmu/exceptions.h. It provides

all the information required to handle the exception in a CPU independent way.

struct ExceptionData {

struct Task *exd_Task;

struct MMUContext *exd_Context;

ULONG *exd_Descriptor;

ULONG *exd_NextDescriptor;

APTR exd_FaultAddress;

APTR exd_NextFaultAddress;

ULONG exd_UserData;

ULONG exd_NextUserData;

ULONG exd_Data;

APTR exd_ReturnPC;

ULONG exd_Flags;

ULONG exd_Properties;

ULONG exd_NextProperties;

42 The MuLib Programmer's Manual

UBYTE exd_internal;

UBYTE exd_FunctionCode;

BYTE exd_Level;

BYTE exd_NextLevel;

ULONG exd_DataRegs[8];

ULONG exd_AddrRegs[7];

UWORD *exd_SSP;

UWORD *exd_USP;

struct ExecBase *exd_SysBase;

struct MMUBase *exd_MMUBase;

};

Let's now discuss the meaning of the components in this structure:

exd_Task contains the pointer to the Task structure of the task that caused the exception. If

this hook was added to the supervisor Context, this �eld is meaningless and must be left

alone. This is simply because the library does not distinguish between a supervisor exception

in interrupt code, or in supervisor code called from a task.

exd_Context contains the handle of the Context responsible for the fault. This is always the

Context the hook was added to in case this is a Context speci�c hook.

exd_Descriptor contains a pointer to the true hardwareMMU descriptor which handles the fault.

This pointer should usually be left alone. In case an indirect descriptor caused the access fault,

this does not point to the page descriptor, but to the indirect descriptor pointing to the page

descriptor, i.e. �one level up� to what you might expect. In case you must read this descriptor

or write a new one, you absolutely must call CacheClearE() to make sure that the descriptor

is really written out.

exd_NextDescriptor In case of a misaligned access, i.e. an access that spawns two pages because

the access hit a page boundary, this is the descriptor for the end address of the access, and

exd_Descriptor is the descriptor for the �rst address of the access. If the access is aligned,

both pointers are identicals. Note, however, that this descriptor need not to point to a higher

address. For example, amovem.l regs,-(ax) could cause a �backwards� misaligned exception.

Additionally, read the warnings above about reading and writing of descriptors.

exd_FaultAddress the start address of the access that faulted.

exd_NextFaultAddress The end address of the access that faulted, inclusive. For a long word

access, this would be exd_FaultAddress+3, for a byte access, this would be indentical to

exd_FaultAddress. Note that it may well be that exd_NextFaultAddress is a smaller

address than exd_FaultAdress. This might, for example, happen for a movem with pre-

decrement addressing mode, i.e. movem.l d0-d7/a0-a6,-(a7). Exception handlers must be

aware of this special situation.

exd_UserData The data provided by MAPTAG_USERDATA or MAPTAG_BLOCKID

for invalid and swapped pages, as de�ned by SetProperties() or SetPageProperties().

This will be NULL in case no user data is available.

exd_NextUserData In case of a misaligned access, the user data of the second page that was

involved in the exception. If the access was aligned, this is identical to exd_UserData.

exd_Data If the access was a write access and the EXDF_WRITEDATAUNKNOWN �ag in

the exd_Flags �eld is cleared, then this long word will contain the data the CPU tried to write

out. You've to ask the library to provide this data, hence to keep this bit cleared by selecting

MMU Exception Handling 43

the MAPP_REPAIRABLE property �ag. If you do not set MAPP_REPAIRABLE,

you might get data in some situations on some CPUs, but I don't guarantee anything.

The data is right-justi�ed in this �eld, i.e. bytes will use bits 7 : : : 0, words will use bits

15 : : : 0 and long word accesses will use the complete �eld. The library does not provide

meaningful write data for double, extended,movem ormove16 accesses as this is de�nitely

an advanced feature. Especially, you may see movem faults as a series of long word or word

writes on some CPUs, while this instruction is atomic and reported as one big access on other

CPUs.

This data should be used only for debugging purposes and �Enforcer like� applications, and for

applications where you can guarantee that movems do not occur, i.e. emulators that emulate

�computer hardware� by the MMU and might read the data written to the emulated hardware

right here.

The size of the access is available by calculating the di�erence of the exd_FaultAddress

and the exd_NextFaultAddress �elds, but this size may have a sign, i.e. will be negative

in some cases.

In case you want to allow the CPU to continue execution without retrying a write access, for

example because you either managed to complete the write yourself or you want to ignore the

access, set the EXDF_WRITECOMPLETE bit of the �ags �eld below.

In case you do not set this bit, the CPU will attempt to re-run the faulty instruction. In

case you haven't been able to repair the fault using some other techinque, as for example by

swapping in the faulty page, your exception handler will be called again.

In case of a read fault, you may place the data to be read back in this �eld and set the

EXDF_READBACK �ag in the �ags value below. The MMU library will then attempt

to place this value in the input pipeline of the CPU and to repair the faulty access by provi-

ding this dummy data. The data has to be placed right-justi�ed in this �eld again, and the

MAPP_REPAIRABLE bit of the page must have been set in order to make this working.

Certain restrictions arise, again: First, a movem might show up as several exceptions, hence

you might be able to provide data for each register loaded, or it might show up as one single

exception. In this case, all registers will be loaded with the same value. It was hard enough

to emulate this, so please don't complain...

Instruction faults can't be repaired like this, hence you will not be able to �ll the instruction

pipeline of the CPU. The only legal way of handling this fault is to provide a spare page or to

alter the return PC. Do not try to �ll the instruction pipeline, the MuLib will call the Exec

exception handler directly in case you try to.

exd_ReturnPC The program counter of the instruction that caused the fault. This is only an

approximate value due to the instruction prefetch feature of all CPUs of the 680x0 family.

In case a branch was performed after the faulty instruction was loaded, and before it was

detected, this PC might be completely useless because program �ow after detection of the

exception might have taken the branch, causing the PC to be in a completely di�erent part of

the program. There's nothing that can be done about it. However, the program is guaranteed

to continue �at the right place�.

In case you set the EXDF_CALL �ag, this �eld should be �lled with the address of a

small procedure which will be called in user mode, in the Context of the Task that caused

the exception. This routine could, for example, send a message to a �daemon� in order to

repair the fault, and could run into a WaitPort() to wait for the daemon to repair the fault.

Additionally, the user code might try to repair the access itself. It has access to all registers of

the faulty program, and must therefore preserve all registers unless it attempts to alter them

�on purpose�. The exception data structure is no longer available if your code has been called.

44 The MuLib Programmer's Manual

In case you need it, you have to make a backup in the exception handler to a private memory

region, and use this backup in your user routine. This feature is not available for supervisor

Contexts.

Alternatively, use the �message hook� mechanism of the MuLib which provides all this for you

already if you don't want to get a headache. Message hooks are described below.

The user routine should then return with an RTS to the library code � note that the stacked

PC points to some code in the library, not to the faulty code itself, it's truely deep magic to

restore all this information � which will then rerun the faulty instruction.

If you haven't been able to repair the cause of the fault, the exception hook will be called

again. This means speci�cally that the exception mechanism will loop forever if you can't

repair the access.

exd_Flags A combined input/output �ags long word. Amongst private �ags you'd better not care

about, the following input �ags are available:

EXDF_WRITE a write fault if set. If reset, a read fault.

EXDF_INSTRUCTION a fault on fetching an instruction. As a special case, this could be

a write fault if someone tried to write out instruction data with an instruction function

code using the moves instruction. This is currently unsupported by the library and

should not be tried.

EXDF_WRITEPROTECTED failed due to write protection of the destination.

EXDF_SUPERVISOR failed due to supervisor only protection of the source/destination.

EXDF_WRITEDATAUNKNOWN the write data was lost, exd_Data is invalid in

this case. This might happen in case a write access hit a non-MAPP_REPAIRABLE

page. However, you should only set this property �ag in case you really really mean

it. Providing the write data might cause a lot of overhead for the MuLib code on some

con�gurations.

EXDF_MISALIGNED The access was misaligned, i.e. more than one page was involved

in the access. Prepare to swap in more than one page, for example. If this bit is set,

exd_FaultAddress and exd_NextFaultAddress should be investigated closely to

�nd the pages that must be repaired.

The following �ags can be set by your code to let the library know what to do about the fault:

EXDF_READBACK abort a faulty read and provide the exd_Data word as input for

the CPU. Do not try to rerun the access. This requires a lot of trickery for certain

con�gurations and is not fast at all.

EXDF_WRITECOMPLETE abort a faulty write, and do not try to rerun it. This means

that your code somehow managed to complete the write cycle, or that your handler found

that it is no longer necessary to complete the cycle. MuForce, for example, sets this �ag

after having generated the debug output to let the faulty program continue.

EXDF_CALL call a routine whose address is in exd_ReturnPC. The procedure will be

called in user mode as part of the faulty Task and its Context, as a �subroutine� of

the MuLib code. It might be used to sent out a message and wait for its reply to get

the missing page �xed by another task. This feature is not available for the supervisor

Context, the MuLib will cause a �guru� in case you try. Note that the library does not

check for you whether a Wait() is useful or even legal, as for example if the faulty task

is in Forbid() state. It is the matter of your exception hook to check this. The MuLib

�message hooks� will reject the exceptions in this case.

MMU Exception Handling 45

exd_Properties The property �ags of the page that was responsible for the fault.

exd_NextProperties In case of a misaligned access, the �ags of the second page involved in the

access. For non-misaligned accesses, this is identical to exd_Properties.

exd_internal Leave this alone, it's for internal use of the library.

exd_FunctionCode The function code of the access. The following values are de�ned for user

Contexts:

1 User data access

2 User code access

: : : and the following for Supervisor Contexts:

5 Supervisor data access

6 Supervisor code access

All remaining function codes relate to physical bus errors and should not be passed thru to

your context hook.

exd_Level The level of the MMU tree at which the access fault happend and at which the MMU

descriptor resides. This need not to be the �page level� for early termination descriptors or

invalid descriptors at a higher level. Experts should note that this is not even guaranteed for

the 040 or 060! Furthermore, in case of an indirect descriptor, this is the level of the pointer

pointing to the �nal page descriptor, not the level of the real page descriptor.

This is advanced information, you usually should not care about. Level A of the MMU tree

is encoded as �0�, level B as �1� and so on. Note that this numbering is di�erent from the

MC680x0 internal counting which encodes level A as �1�.

exd_NextLevel In case of a misaligned access, the level of the second descriptor involved in the

fault.

exd_DataRegs A copy of the data registers at the time the fault happened. These images are

copied back as soon as the exception terminates, hence a �higher magic� exception handler

could alter these...

exd_AddrRegs A copy of the adress registers, but without the stack pointer.

exd_SSP The supervisor stack pointer. This points directly to the processor speci�c exception

stack frame. The �rst UWORD of this stack frame is the copy of the status register at the

time of the fault. Be warned! Everything else is processor speci�c, the MuLib might also want

to modify this exception stack frame, so hands o�!

exd_USP The user stack pointer. Some higher magic could even replace temporarely the USP

in the exception handler and run a user routine with a private stack, for example to handle

automatic stack enlargement. The MuLib handler will restore the correct USP from this �eld

as soon as it returns.

exd_SysBase A pointer to the library base of the exec.library. Do not access AbsExecBase

within the exception handler, use either a private copy or this pointer. Not following this rule

might be fatal.

exd_MMUBase A pointer to the library base of the mmu.library, also found in register a6.

46 The MuLib Programmer's Manual

In case you're going to write an automatic stack extension program, you should keep in mind that

the EXDF_CALL mechanism requires about 300 bytes of user stack space. Similar, task switching

takes some user stack, too. To be able to swap in stack in case of a stack over�ow, you need to

provide an alternative user stack, for example by setting the USP to a temporary preallocated

stack. The library �message hooks� discussed below will handle this automatically and are therefore

�safe� for handling this situation.

For the same reason, you might have to add �Switch� or �Launch� handlers or might have to

replace the exec scheduler to handle this situation. The MuLib provides an alternative scheduler,

but I do not yet want to document how to install it.

There are unfortunately a number of �features� of each CPU which should not go unmentioned:

The 68020/68851 and 68030 Execution of instructions in a access-protected �zero page� is really,

really slow. Please keep this in mind! Furthermore,moves to instruction space is unsupported.

This goes for all other CPUs as well.

FPU related access faults are a dark chapter in exception handling. Of a faulty fmove, only

the �rst two long words are checked by the 68030 and therefore at most two hits get reported,

all others go unnoticed and will cause a second exception if the instruction is re-run. Of a

faulty fmovem, only the �rst two long words hits get reported, too. The CPU might ignore

all other hits and continue execution. This means speci�cally that a debugging tool might not

be able to see all hits that happened on these instructions, and you will not be able to capture

them for private use. VM systems shouldn't have much problems with this, though, since the

invalid page should have been swapped in and each access can hit at most two pages at once

if it is misaligned. However, you must be prepared that the mmu.library will not be able to

set the EXDF_MISALIGNED �ag correctly in this case. The instruction handler will be

called again, though, in case the �rst hit did not swap in an adjacent page which was hit by

the third or later long word.

The 68040 Repairing ofmovem write accesses is not always available, and certainmovems can't

be continued safely. In case amovem read or write goes to an invalid page other than at level

2 or 3, the MuLib has to abort the movem completely by the �tough way�. It won't �guru�,

though, but you won't be able to get the data that was supposed to be written out. There's

nothing I can do against it. To avoid this situation in case you really need the movem data, set

the MAPP_REPAIRABLE property �ag since this will put all descriptors at page level.

Movems to a register included in the register list itself might not to be rerun safely in all

circumstances. Avoid them. Readback data is only available for all destination registers at

once, you can't specify individual pipeline data for single registers yet.

FPU related access errors cause even more problems than on the 68030. If a fmove or fmovem

moves more than two long words, for example a fmove.x or any fmovem, the processor will

only notice the �rst access of a faulty page. If the instruction would catch more than one

hit, the processor restarts the instruction completely from the beginning. This means for

debugging tools that you will not be able to �x a faulty instruction of this kind at all by just

swapping in a single page at once, the processor would loop forever. The MuLib ��xes� this

for MAPP_REPAIRABLE pages by replacing all invalid pages by blank dummy pages at

once. Note that even disassembling the instruction at the PC would not help here because the

PC might point to an FPU instruction even if the hit was caused by the instruction before.

Hence, the following two instructions

move.l d0,(a3)

fmovem.x fp0,(a3)

MMU Exception Handling 47

with a3 pointing to an invalid page, will both invoke the exception handler with the same PC

value, namely the address of the fmovem. This is the �fault� of the writeback pipeline of the

68040.

This might be a problem for VMM systems as well: Because there's no single �ag that tells

whether the hit was caused by an FPU instruction or not, the processor might re-run a FPU

instruction as mentioned above again, possibly accessing the two di�erent pages. If the VMM

system would have swapped in the second page by the �rst hit, and removed the �rst page

accessed by this instruction from memory, re-running this instruction will cause another VMM

hit, this time from the �rst page. It is therefore important that a VMM system must not swap

out a page previously swapped in. At least two adjacent pages must be available at once.

The 68040 has one additional user instruction, move16. Due to the tricky nature of this

instruction, the library might not be able to handle it correctly, even though I tried my best.

As for movems, individiual pipeline access to the data written out or for readback data is

not available. Especially, tricky situations may arise if a move16 accesses hardware registers

that do not tolerate double writes. The MuLib can't avoid this case under all circumstan-

ces, i.e. double writes may happen in some situations. Since the Amiga hardware does not

support move16 correctly anyhow � since this instruction causes a �burst access� even to

non-cacheable memory � it is highly �recommanded� not to use it.

The 68060 The library handles branch cache �ushes transparently, no need to worry about them.

So much for the good news.

Written data is usually not available unless the library emulates this with some heavy ma-

gic and is told to do so with the MAPP_REPAIRABLE �ag. Things are getting even

worse if no exception handler wants to make use of the writeback data and returns with the

EXDF_WRITECOMPLETE �ag cleared. In this case, the MuLib tries to rerun the faulty

instruction again, even though it has been already executed a �rst time. It tries to rebuild all

the registers except for the FPU registers, the supervisor model and the SSP and then returns

to the PC of the faulty instruction. Avoid this situation as it causes a lot of overhead. Espe-

cially, you need not and should not specify MAPP_REPAIRABLE for virtual memory

applications.

Except that, all 68040 restrictions regardingmovems ormove16 apply here again, see above.

In case of a non-locked read-modify-write access, as for example a

addq.l #1,(a0)

the library will call the context hooks twice, once with the read data, and then again with the

write data. This is an emulation service to guarantee consistency amongst all members of the

MC68K family.

However, things are getting rather nasty in case of a misaligned RMW access of which one

part of the access is valid and the other part is not. The 060 manual states that these accesses

can't be rerun safely because parts of the data might have been written back already, and

rerunning the instruction might cause this wrong data to be re-used again. Fortunately, this

problem seems to arise for true physical bus errors only, and it is not in the purpose of the

mmu.library to manage them anyhow. They are currently handed thru to the exec handler,

but see also the SetBusError() function.

As for all other members of the MC68K family, FPU accesses are somewhat critical. This

is even worse for the FPU instructions that have to be emulated in software. Unlike the

68040, the 68060 does not prefetch the full instruction before running the emulation exception,

which means for you that some exceptions might show up in the FPU emulation core, as

48 The MuLib Programmer's Manual

supervisor mode exceptions, in the 68060 library. It is the job of this library to handle them

properly, and to emulate a user mode exception, for example to swap in the full instruction

before proceeding. The original Motorola FPSP code handled this correctly, but this code

has been �optimized� unfortunately by various, if not all authors of 68060.libraries such that,

except for the 68060.library in the mmu.library distribution archive, there is currently no other

68060.library that supports virtual memory correctly.

6.2 Page Access Handlers

The purpose of the page access handler is to notify programs that operate on the low-level side of

the MMU programming � namely by SetPageProperties() or GetPageProperties() � if the

high-level functions RebuildTree() resp. RebuildTrees() try to access or overwrite their setup.

It provides a method to modify the MMU tree on the low level transparently to the high level

functions. Thus, the low-level program will be able to protect its setup from getting overwritten

by a high-level function. Unlike the �segmentation fault� handlers, the page access handler is not a

true hardware exception, but the calling rules and restrictions are the same. It is setup by

struct MMUContext *ctx;

struct ExceptionHook *hk;

hk = AddContextHook(MADTAG_CONTEXT,ctx,

MADTAG_TYPE,MMUEH_PAGEACCESS,...);

similar to all other exception handlers.

The page access handlers are called whenever RebuildTree() tries to reinstall a page descriptor

with the MAPP_SINGLEPAGE property �ag set. If so, your handler is allowed to modify this

page descriptor. However, you should remember that the high-level functions are not aware of this

modi�cation, so this feature should be used carefully.

A typical application of this feature is the �MuGuardianAngel� type program: The idea is here

to mark �free� memory as MAPP_INVALID to be able to detect illegal memory accesses. Since

an AllocMem() has to mark the memory valid it allocated, the MMU tables have to be adjusted

for each allocation. Similary, released memory has to be made unavailable on a FreeMem(). On

the other hand, AllocMem() and FreeMem() are not allowed to break a Forbid() and are hence

not able to call the high-level functions � which might do so. They therefore have to use the low

level SetPageProperties(). Since the low level functions do not inform the higher level about

the modi�cation, a program adjusting the MMU descriptor with the high-level functions will revert

the modi�cations made by SetPageProperties() before. The solution is here to install a page

access handler that checks whether the higher level is going to re-install one of the modi�ed page

descriptors, to intercept here and to set the MAPP_INVALID �ag correctly.

The page access handler could either try to generate the new page data itself, for example by

using its own database or by investigating system structures; the MuGuardianAngle Page Access

Handler scans, for example, the Exec memory lists to �nd out whether the memory page is �free�

or not, and hence to decide whether it should or should not invalidate the page. Alternatively, it

would also be permissible to call GetPageProperties() to read the old property �ags that have

been installed before and that are about to be overwritten. In both cases, though, you should be

careful to modify only the �ags your program really requires or the resulting page layout might be

unusable and unexpected to the application that triggered the high-level page rebuild.

Your handler is called with the page access data structure, documented below, in register a0,

with the provided user data from MADTAD_DATA in a1 and a4 and the library pointer in a6.

The calling rules are therefore identical to those of all other exception handlers. Registers d0-

d1/a0-a1/a4-a5 are scratch registers, a6 is not. In case your handler returns with the Z �ag set,

the library aborts calling other handlers of lower priority. In case the Z �ag is found reset, the

MMU Exception Handling 49

MuLib will call the next available handler; this is for example desirable if the page to be modi�ed

is not one of the pages your handler keeps care of.

Remember that you're called in supervisor mode with all interrupts disabled, as for all other

exception handlers. Your code should better be fast, especially if a lot of descriptors have to be

rebuild.

Here's the PageAccessData structure:

struct PageAccessData {

ULONG pgad_Level;

void *pgad_Address;

ULONG *pgad_Destination;

struct MMUContext *pgad_Context;

struct MMUBase *pgad_MMUBase;

ULONG pgad_Properties;

ULONG pgad_UserData;

};

The meaning of the �elds in this structure is as follows:

pgad_Level The level at which the MMU descriptor has to be build. This is zero for level A, one

for level B and so on. Note that this numbering is di�erent from the internal MC68K scheme

which counts level A as one. Since this handler is only called for MAPP_SINGLEPAGE

descriptors, this will always be the page level of the MMU tree. However, what the page level

is is up to the depth of the MMU tree and may vary, even though this number is constant for

the lifetime of a speci�c Context.

pgad_Address The logical address the descriptor to be build will handle. Hence, this gives the

address that is to be translated or mapped. Your handler should check this �eld to determinate

whether it is responsible for the page that is about to be installed.

pgad_Destination The address the true hardware descriptor will be written to. There's little

reason to make use of this entry. Especially, it might not yet be initialized when your code is

run, and will be �lled in after your code has run.

pgad_Context The Context the MMU tree being rebuild belongs to. This is the Context you

installed the page access handler in. Unlike for MMUEH_SEGFAULT handlers, there is

no global handler list, only Context speci�c handlers are available.

pgad_MMUBase The library base address.

pgad_Properties The page properties, de�ned in mmu/context.h. This de�nes which kind of

hardware descriptor the library is about to build. In case you want to alter the settings, you

need to place the desired new properties of the page here.

pgad_UserData This �eld will be used if one of the property �ags MAPP_SWAPPED or

MAPP_INVALID, MAPP_REMAPPED and MAPP_BUNDLED or, last but not

least, MAPP_INDIRECT have been enabled.

It contains property speci�c information like the block ID forMAPP_SWAPPED, the user

data for MAPP_INVALID pages, the physical destination for MAPP_REMAPPED

and the physical page address forMAPP_BUNDLED pages, and �nally the destination de-

scriptor forMAPP_INDIRECT pages. It is not available if theMAPP_REPAIRABLE

bit is set. In case you modify the properties, you possibly need to correct this �eld, too.

50 The MuLib Programmer's Manual

6.3 Switch and Launch Handlers

Since the tc_Switch() and tc_Launch() �elds of the Exec Task structure are no longer available

if a Task entered a Context explicitly by means of EnterMMUContext(), the MuLib has to o�er

replacement functions. They are, additionally, more �exible than the Exec function pointers since

more than one handler can be installed at a time. Very much like the page access exception, these

exceptions are not caused by hardware exceptions, but are called as soon as a Task looses the CPU

� for MMUEH_SWITCH � or gains the CPU � for MMUEH_LAUNCH. Since both

exceptions require that the MuLib speci�c switch and launch vectors have been installed in the Task

structure itself, your Task has to enter an MMU Context explicitly to make this feature available:

struct MMUContext *ctx;

struct Task *task;

task = FindTask(NULL);

ctx = CurrentContext(task);

if (EnterMMUContext(ctx,task)) {

/* everything is fine */

}

This will attach the current task explicitly to the public Context if it hasn't been attached to a

Context before. Additionally, the Task must be removed from this Context before it quits. This

could by done by

LeaveMMUContext(FindTask(NULL));

/* and say goodbye! */

}

before running into the �nal RTS. As for all exceptions, the AddContextHook() function will

install a new exception handler, but this time the MADTAG_TASK tag item must be supplied

since swap and launch handlers are intrinsically task speci�c:

struct Task *task;

struct ExceptionHook *hk;

hk = AddContextHook(MADTAG_TASK,task,

MADTAG_TYPE,MMUEH_SWITCH,...);

Finally, the hook must be activated by ActivateException(). The MMUEH_SWITCH hook

will be called in supervisor code, immediately before your task looses the CPU. The task speci�c user

and supervisor Contexts will still be active, though. The MMUEH_LAUNCH handler will be

called right before your task will gain the CPU, with the MMU setup for this task already installed.

Calling rules and register usage are as above, and as for all exception hooks.

6.4 Message Hooks

Even though the MuLib exception hooks are very powerful, they are a bit cumbersome to use, espe-

cially from high-level languages. Therefore, the MuLib o�ers for the MMUEH_SWAPPED and

MMUEH_SEGFAULT exceptions another software wrapper which makes exception handling

much easier. This wrapper is build on top of the AddContextHook() functions, and was designed

with �virtual memory management� applications in mind: On installation, you specify a Context

and a message port. Then activate the exception. As soon as the MMU detects a page fault, a

message will be sent to the provided port, and the faulty task will be halted. Your application has

MMU Exception Handling 51

then the chance to �x this problem, for example by swapping in the missing page. As soon as you

reply to the message, the faulted instruction will be re-run.

However, due to this mechanism, a task switch must be performed. Since this should not happen

if the faulting task is in �Forbid()� or �Disable()� state, the message hooks will reject any faults that

happen while the executing task is in one of these states. The fault will then be delivered to the

handlers of the next lower priority, or if no other handler is available, will be forwarded to Exec,

which in turn would �guru�. This is not a restriction of the MuLib, but due to the very design of

the Exec kernal.

Message hooks require that the tasks whose faults are about to be handled are attached explicitly

to a Context, thus message hooks won't work automatically for all public Tasks. They will reject

to handle exceptions from Tasks that haven't been attached to any Context, even though these

Tasks use the MMU setup of the public Context. The following code would, for example, attach

the current Task to the public Context, and hence would allow to handle exceptions of the current

Task by means of message hooks:

struct MMUContext *ctx;

struct Task *task;

task = FindTask(NULL);

ctx = CurrentContext(task);

if (EnterMMUContext(ctx,task)) {

/* everything is fine */

}

Don't forget to LeaveMMUContext() when shutting down.

Message hooks are installed and initialized by

struct MMUContext *ctx;

struct MsgPort *port;

struct ExceptionHook *hk;

hk = AddMessageHook(MADTAG_CONTEXT,ctx,

MADTAG_CATCHERPORT,port,

MADTAG_TYPE,...);

The available tag items are de�ned in mmu/mmutags.h and are identical to those of the low-levelAdd-

ContextHook() call, except that MADTAG_USERDATA is not available and a destination

port for the exception message must be provided by MADTAG_CATCHERPORT. Especially,

the following tags are available:

MADTAG_CONTEXT The context to which this exception hook should be added. This tag

item must be present.

MADTAG_TASK If the hook should be called only if a speci�c task is running, specify a pointer

to the task structure here. Remember that more than one task can be attached to a Context.

Be warned, though! Adding too many task speci�c hooks slows down exception handling

considerably.

MADTAG_TYPE The type of the exceptions this hook should handle. Currently, only page

faults MMUEH_SWAPPED and segmentation faults MMUEH_SEGFAULT can be

handled by means of message hooks.

MADTAG_CATCHERPORT The port to sent the exception message to. Must point to an

initialized exec MsgPort structure. This tag item is mandatory, or the function call will fail.

52 The MuLib Programmer's Manual

MADTAG_NAME A name for the hook. This name is initialized, but the library makes no use

of it. Since the structure of the exception hook is undocumented, there is currently no way of

using this name from the outside as well.

MADTAG_PRI A priority, ranging from �128 : : :+127. The higher the priority, the earlier the

hook will be called. Higher priority handlers are called �rst.

Then, as for all other exceptions, the message hook must be activated by calling

struct ExceptionHook *hk;

hk = ActivateException();

If the handled task generates an exception, the following message will be sent to the supplied port,

documented in mmu/exceptions.h:

struct ExceptionMessage {

struct Message exm_msg;

struct ExceptionData exm_Data;

};

The ExceptionData structure is documented above, it contains all the information required to

handle the exception. Once you reply to this message, the task that caused the exception will be

restarted and will re-run the access cycle.

To disable the exception, the following function should be used:

struct ExceptionHook *hk;

DeactivateException(hk);

This function, similar to ActivateException() is interrupt-callable and will not break a �Forbid()�

or a �Disable()�, hence is even available in critical situations. It must be called before you remove

the message hook completely with

struct ExceptionHook *hk;

RemMessageHook(hk);

However, before you do so, you must have replied to all exception messages you received, or the

MuLib might deadlock or crash. The following code segment presents a very simple way if only one

message hook has been activated:

struct ExceptionHook *hk;

struct MsgPort *exceptionport;

struct Message *msg;

DeactivateException(hk);

while(msg=GetMsg(exceptionport))

ReplyMsg(msg);

RemMessageHook(hk);

Note the order of the calls, �rst disable the hook, then reply to the messages left on the port, then

remove the hook.

MMU Exception Handling 53

6.5 Function Reference

To complete this chapter, we give an overview about the exception handling related functions in the

MuLib:

Table 5: Exception Control Functions

MuLib function Description

AddContextHook() Allocate and install an exception hook

RemContextHook() Unlink and release an exception hook

AddMessageHook() Allocate and install a high level hook

RemMessageHook() Unlink and release a high level hook

ActivateException() Enable an exception hook

DeactivateException() Disable an exception hook

54 The MuLib Programmer's Manual

7 Building and Adjusting Contexts

The MuLib allows to build several MMU con�gurations � the Contexts � at once, and to load and

unload them automatically as soon as the Tasks attached to these Contexts gain or loose the CPU,

as explained in the �rst chapter. Once the MuLib has been loaded, only two Contexts are available:

The public Context, and its supervisor Context. More private Contexts can be build on demand,

though. Tasks attached to these Contexts will somehow �detach� from the remaining system as they

operate in their private address space. Even though the MuLib o�ers to use the public Context

as a �template� for a private Context, there is, however, currently no mechanism to synchronize a

private Context with the public Context, hence to forward some or all adjustments of the public

Context to private Contexts. Therefore, tasks running in a private Context currently cannot pro�t

from tools like �MuFastRom� which modify the public Context only.

7.1 Creating a New Context

The followingMuLib call will build a new Context; unless you specify some tags to proceed otherwise,

the function will create a completely blank context with no valid logical addresses at all. Hence, you

most likely want to specify tag items to duplicate the public Context and use it as a starting point

for further modi�cations:

struct MMUContext *ctx;

ctx = CreateMMUContext(...);

As some other MuLib functions, it is completely tag-based. After the Context has been build, it is

ready to accept Tasks for attachment.

The following tags can be passed in, de�ned in mmu/mmutags.h:

MCXTAG_COPY build a copy of the Context passed in as tag data. If this pointer is NULL,

build a copy of the public user Context. This is highly recommended since if this tag item is

not given, all context addresses will be marked as MAPP_BLANK. Most likely not what

you want.

If you specify a di�erent page size than that of the context you want to copy, you should

specify the MCXTAG_ERRORCODE as well and study the return code carefully. The

mmu.library might have performed some rounding to �t the old table speci�cations into the

new table layout. In worst case, this will make your new table unusable. It is therefore in

general not a good idea to specify a page size larger than that of the cloned Context, or even to

select a di�erent table size at all. Even though the library itself, and all the MuTools allocates

all its internal structures aligned to �worst case� page sizes, this might not be true for external

user programs. (Create only)

MCXTAG_SHARE mutually exclusive to the above, share the properties from a parent context

which is passed in as tag data. If this pointer is NULL, share the properties from the public

user Context. Context sharing is recommended whenever your new Context shall not dispatch

from the remaining system completely, as changes in the parent (shared) context are handed

thru to the pages marked as MAPP_SHARED in your child context. If this tag is present,

all pages of the child context are marked asMAPP_SHARED and hence will get the same

properties than the shared parent context.

The main di�erence between MCXTAG_COPY and MCXTAG_SHARE is that the

former makes only a copy of the parent at creation time, but leaving the child untouched if

the parent changes, whereas the latter forewards changes of the parent to the child whenever

this happens.

Building and Adjusting Contexts 55

MCXTAG_SHARE imposes some restrictions, though. Child Contexts build by means of

this tag item must use the same table layout, especially the same page size than the parent,

and must not use a private supervisor context. (Create only)

MCXTAG_EXECBASE allow accesses of AbsExecBase and of valid chip memory within the

�rst page, even if the �rst page is marked asMAPP_INVALID. This is an important feature

if the MuLib is used by debugging tools like �MuForce�. These accesses will be emulated in

software and are hence slow. They should be avoided for that reason. Os 3.0 and up takes this

into account already and starts the chip memory pool at a higher address, but on all lower Os

releases a tool like �MuMove4K� should be run.

AbsExecBase accesses are handled with highest priority �rst and might be faster, even

faster than with the original �Enforcer�. They are still slower than the real thing. It is not

guaranteed that the library will really read AbsExecBase from the address 4.w, dependent

on some internals, it might give you a cached copy instead. This will usually do only good.

This option defaults to TRUE. (Create, get and set)

MCXTAG_BLANKFILL de�nes a ULONG �ll value for blank memory regions.

This ULONG is read by the CPU in case a program tries to access MAPP_BLANK It

defaults to 0L, but other values might be useful for debugging. MuForce, for example, can be

asked to install here some nastier values. (Create, get and set)

MCXTAG_MEMORYATTRS Exec memory attributes as de�ned in exec/memory.h. This

memory attribute is used when allocating memory for the hardwareMMU tables. This defaults

to MEMF_PUBLIC, but can be set to other values for special purposes. (Create and get)

MCXTAG_PRIVATESUPER A boolean value, either TRUE or FALSE. If TRUE, the Mu-

Lib will build a private supervisor Context for your user Context as well, which is independent,

but a copy of the public supervisor Context. This means speci�cally that possible modi�cations

of the public supervisor Context will not be carried over to your private supervisor Context.

The default is FALSE. Note that this feature is not available for Contexts that want to use

context sharing.

Even if you pass in FALSE here, the library might still ignore your choice and might decide to

build a private supervisor Context anyways. This happens if the table layout you've chosen is

di�erent to the default table layout, making the user tree incompatible to the default supervisor

tree. (Create only)

MCXTAG_ZEROBASE This option has only an e�ect ifMCXTAG_EXECBASE isTRUE

and the �rst page of the MMU table is marked as MAPP_INVALID; hence, if the MuLib

has to emulate accesses into the �rst page.

This tag provides a base address which will be used as physical address by the software

emulation. It defaults to 0L meaning that the MuLib will emulate accesses into the true zero

page. This is important if the zero page gets remapped to a di�erent location in a �rst step,

and an Enforcer type program disabling the access to the zero page is run later on. The MuLib

must, in this case, know that it should emulate the accesses into the remapped copy of the

zero page instead.

The zero page remapper should specify this tag to redirect accesses transparently, even if an

Enforcer type application invalidates the zero page. Failing to do so would make the MuLib

emulating the access to the incorrect, non-remapped memory location. Since other programs

might want to build a private MMU table with a di�erent table size, it is not enough to align the

remap destination of the zeropage toGetPageSize() boundaries,RemapSize() alignment is

required! Due to the tricky nature of memory remapping, this is clearly an advanced feature.

(Create, get and set)

56 The MuLib Programmer's Manual

MCXTAG_SHAREABLE If set to TRUE, make this context public and allow child contexts

to share parts of the table layout of this context. Note that this imposes some restrictions on

your context, as it must use the global supervisor context and hence must use the same table

layout than the default context. Furthermore, a DeleteMMUContext() may fail if you try

to delete your context while some child contexts still share the table layout. (Create and get)

MCXTAG_SHUTDOWNTASK This tag data points to the task structure the mmu.library

shall sent a signal to as soon as the context is no longer in use and may be disposed. This

happens either if the last child detaches from a public context or the last task attached to

this context leaves it by means of LeaveMMUContext(). You may then try to call Dele-

teMMUContext() again to shutdown your context. Defaults to NULL, i.e. no task will be

informed. (Create, get and set)

MCXTAG_SHUTDOWNMASK de�nes the signal mask (not a signal bit!) that shall be sent

to the MCXTAG_SHUTDOWNTASK as soon as the last child context or the last child

task of this context gets removed. Defaults to NULL, i.e. no signal will be sent. (Create, get

and set)

MCXTAG_DISCACHEDES A boolean tag item. If set to TRUE, the memory that keeps the

descriptors is cache-inhibited. This works around some problems that appear if a program

attempts to hack on the MMU tables itself. Note that this is de�nitely illegal and unsupported

anyways, the MuLib code has no problems with descriptors in cacheable memory. Note,

however, that the descriptors will be only non-cacheable �as seen� from the Context itselt. It

will not change the cache mode as seen from other Contexts, even from the supervisor Context

of the Context passed in.

This means that reading user descriptors from user code will not be cached, and supervisor code

reading supervisor descriptors won't �ll the cache either, but user code reading the supervisor

tables or supervisor code reading the user tables will enter the cache as before. I will not try

to improve this compatibility hack further! (Create and get).

Defaults to FALSE, but the setting for the public user and supervisor Context can be adjusted

by means of

DescriptorCacheInhibit ON

in the ENVARC:MMU-Configuration �le.

Nevertheless, hacking the MMU has to stop, I do not guarantee for anything.

MCXTAG_LOWMEMORYLIMIT De�ne a boundary in the zero page such that accesses to

addresses higher or equal to this boundary will be emulated in software. This is mainly for

68060/68040 support under Os V37 and V38 where chip memory started at 0x400 inside the

zero page. The MuLib checks the chip memory base address on startup and provides this as

default value. (Create, get and set).

MCXTAG_ERRORCODE De�nes a pointer to a ULONG the MuLib will �ll with an error or

warning code. It will be set to 0L in case the operation succeeds. (Create only). The following

error codes are de�ned in mmu/context.h:

CCERR_NO_FREE_STORE The operation failed due to lack of memory.

CCERR_INVALID_PARAMETERS The parameters speci�ed by the tags are invalid

or out of range.

Building and Adjusting Contexts 57

CCERR_UNSUPPORTED The parameters are valid, but not supported by the hardware

the program currently runs on. This error code will be set, too, if you try to build a

sharing child context that uses a di�erent MMU table layout than the parent, or requires

a private supervisor context.

CCERR_TRIMMED The library performed some minor adjustments on the MMU table

passed in for cloning. The cache modes might not be optimal due to some roundings that

have to be performed, but the MMU table should work in general.

This is not an error, building the Context succeeded.

CCERR_UNALIGNED The library had to perform heavy rouding in the MMU table

passed in, it might be unusable. For example, remapped pages were misaligned and due

to the rounding accesses might go to wrong locations. If you get this return code, you

should possibly deallocate the new Context and inform the user that the request could

not be satis�ed.

Still, this is not an error. The function will return a new Context, but possibly an

unusable one.

CCERR_SHARENCOPY You tried to use the mutually exclusive context creation tags

MCXTAG_SHARE andMCXTAG_COPY simulatenously, which is unsupported.

This is a true error condition, and no new Context will be build.

CCERR_NOTSHAREABLE You tried to share a context with MCXTAG_SHARE

that is not shareable. Suitable contexts for sharing must be built with the MCX-

TAG_SHAREABLE attribute set to TRUE.

CCERR_SHAREOVERLEVELS You tried to make a sharing child context shareable,

or tried to share a context that is itself a child. The current release of the mmu.library

does not support sharing amongst several generations of contexts, though.

CCERR_NOPRIVSUPER You tried to build a shared context with a private supervisor

context, or that would require a private supervisor context because the MMU table layout

is di�erent than the default context. For the current release of the mmu.library, sharing

contexts must use the public supervisor context as their own supervisor context, though.

The next tag items de�ne the MMU table layout. A logical address, used as input for the MMU,

consists of exactly 32 bits. These bits are now split from the left to the right into groups, de�ning a

�path� in the MMU tree. Each �level� of the MMU tree should be considered as an array of pointers,

pointing to the next lower level of the tree. The nodes of the tree contain the descriptors that de�ne

how the address belonging to the path from the root to this descriptor should be handled. For

example, consider a three level tree with 7 bits for level A and B, 6 bits for level C and 12 bits for

the �page level�. The address 0x01feabcd would be used like this to �nd a descriptor:

0x01feabcd =

7

z }| {

0000 000

| {z }

A

7

z }| {

1 1111 11

| {z }

B

6

z }| {

10 1010

| {z }

C

12

z }| {

1011 1100 1101

| {z }

D

The index into level A of the MMU tree is 0, hence the �rst pointer is read. The MMU obtains now

another array of pointers, called the level B.

The index into level B is, as we see above, 127. The MMU uses now the 127th entry of the table

at level B to obtain a pointer to the level C table.

The index into level C is here 101010, binary for 42. Hence, the 42th pointer of the level C table

will be used, pointing to the page in memory and de�ning the base address for the next step.

The page o�set, indicated byD is 1011 1100 1101 in this example, or short 0xbcd in hex notation.

This number is added to the base address obtained from the descriptor in level C. If the address is

not "re-mapped", the base address would be identically to the �rst 32� 12 = 20 bits of the physical

address.

58 The MuLib Programmer's Manual

Generic Page Formats are Cheaper. Except for special applications, it is usually not a good

idea to build a Context with a di�erent MMU table organization than that used by the

MuLib. If you build a new Context which does not use the same page organization as the

public Context, the MuLib has to build a private supervisor Context for you. Moreover,

task switches between tasks using di�erent table layouts are considerably slower because

the MuLib has to load more MMU registers, and has to �ush the CPU caches. The

overhead is usually not worth the e�ort. Note further that custom MMU table layouts

are not available for contexts that want to use context sharing.

Nevertheless, now for the tag items de�ning the table layout. The �rst group of tag items specify

the number of bits to be used for each level of the MMU tree. They must sum up to 32, as explained

above. You need not to specify all of them, the MuLib will calculate reasonable defaults if you don't.

MCXTAG_DEPTH The depth of the MMU tree to build. Defaults to the depth of the public

Context. In the example above, the depth is three, which is also the depth used by the MuLib

on startup.

Legal values range from 1 : : : 4 for the 68020/68851 and the 68030, but the 68040 and 68060

support only one value, namely 3. (Create and get).

MCXTAG_LEVELABITS The number of bits of the logical address that make up the level A

of the MMU tree. 2

bits

is the number of entries in this level of the tree.

The 68020/68851 and the 68030 support here values from 1 : : : 15, the only legal value for the

68040 and 68060 is 7.

The MMU library will pick a reasonable and system dependent default for you if you don't

specify this tag item. (Create and get).

MCXTAG_LEVELBBITS The number of bits for the level B of the MMU tree, unused if the

depth is smaller than two.

Legal values are 1..15 for the 68851 and the 68030, and 7 as only possible value for the 68040

and 68060. (Create and get).

MCXTAG_LEVELCBITS The number of bits of the level C of the MMU tree, unused if the

depth is smaller than three.

Arguments may range from 1 : : : 15 for the 68851 and 68030, and must be either 5 or 6 for the

68040 and 68060. (Create and get).

MCXTAG_LEVELDBITS The number of bits in the level D of the MMU tree, only used if the

depth is four and therefore unused on the 68040 and 68060; must range from 1 : : : 15. (Create

and get).

MCXTAG_PAGEBITS The number of bits to be used from the logical address as the page

o�set, therefore 2

bits

will be the page size.

Legal values are 8 : : : 15, giving 256 bytes up to 32K pages for the 68020/68851 and 68030, or

12 : : : 13 de�ning 4K resp. 8K pages for the 68040 and 68060.

The default is the page size of the public Context. (Create and get).

7.2 Disposing Contexts

Once a context is no longer used, and no further tasks are attached to it, you should delete it again.

This call will clean up the context, all temporary memory, the abstraction level MMU setup, and

the physical MMU table descriptors:

Building and Adjusting Contexts 59

struct MMUContext *ctx;

BOOL success;

success = DeleteMMUContext(ctx);

Note that this function returns a boolean success indicator

1

. It will fail if the context it shall dis-

pose is still in use, either because it is shared by child contexts, or because some tasks have been

attached to this context. In these situations, the mmu.library will mark the context as private,

will disallow tasks to enter the context, and will not allow new childs to share this context, but

the context will still remain valid. You should therefore specify a signal mask and a task by means

ofMCXTAG_SHUTDOWNMASK andMCXTAG_SHUTDOWNTASK on context crea-

tion. This signal mask will be sent as soon as the last child dispatches from your context; on arrival

of this signal, you may try again to dispose your context. Note that the shutdown signal will be

sent whenever the last child task or child context is gone, no matter whether you tried to shutdown

your context before or not.

7.3 Context Example Code

The following program gives an example how to build a new Context and how to attach a new task

to it:

/***

** MuContextTest **

** **

** Build a task with a private context **

** **

** (c) 1999-2000 THOR-Software **

** Version 1.03 19.03.2000 **

***/

/* Includes */

#include <exec/types.h>

#include <exec/memory.h>

#include <dos/dos.h>

#include <dos/dostags.h>

#include <dos/dosextens.h>

/* MMU specific includes */

#include <mmu/mmutags.h>

#include <mmu/context.h>

#include <proto/exec.h>

#include <proto/dos.h>

#include <proto/mmu.h>

#include <string.h>

/* Defines */

/* This is the location we will re-map accesses to. Should be

** available on all systems.

1

It does since the very �rst release of the mmu.library, check the includes!

60 The MuLib Programmer's Manual

*/

#define TESTLOCATION 0x80000000

/* Protos */

long __saveds main(void);

void MMUTaskTest(void);

void RunTests(struct MMUContext *privctx,UBYTE *testpage,UBYTE *pother);

void Sync(struct MsgPort *destination,struct Message *msg);

void __saveds TestProc(void);

/* Statics */

/* Just the library bases we need */

char version[]="$VER: MuContextTest 1.03 (19.3.2000) (c) THOR";

struct MMUBase *MMUBase;

struct DosLibrary *DOSBase;

struct ExecBase *SysBase;

/* The main program */

long __saveds main(void)

{

long err,rc;

/* This program is able to compile without startup code, hence we have

to setup ourselfs */

SysBase=*((struct ExecBase **)(4L));

rc=20;

/* open the required libraries */

if (DOSBase=(struct DosLibrary *)

OpenLibrary("dos.library",37)) {

if (MMUBase=(struct MMUBase *)

OpenLibrary("mmu.library",40L)) {

err=ERROR_REQUIRED_ARG_MISSING;

/* Check for a valid MMU.

** The mmu.library will also

** open without!

*/

if (!GetMMUType()) {

Printf("MuContextTest requires "

"a working MMU.\n");

err=10;

} else {

Building and Adjusting Contexts 61

/* Run the tests */

MMUTaskTest();

err=0;

}

/* Check for error codes. Everything

** below 64 is considered to be a custom

** error and passed thru as primary

** result code.

*/

if (err<64) {

rc=err;

err=0;

} else {

PrintFault(err,"MuContextTest failed");

rc=10;

}

SetIoErr(err);

/* Shut down: Close libraries */

CloseLibrary((struct Library *)MMUBase);

} else PrintFault(ERROR_OBJECT_NOT_FOUND,"MuContextTest");

CloseLibrary((struct Library *)DOSBase);

}

return rc;

}

/* MMUTaskTest */

void MMUTaskTest(void)

{

struct MMUContext *ctx,*privctx;

UBYTE *testpage,*physical;

ULONG size,psize;

ULONG pother=TESTLOCATION;

ULONG error=0;

/* This is the TRUE test, finally. */

/* Get the public default context as template for the new

context */

Printf("Locating the default context...\n");

ctx=DefaultContext();

Printf("Building a new context...\n");

if (privctx=CreateMMUContext(MCXTAG_COPY,ctx,

/* make a copy of the already existing context */

/* Just stay to plain 4K or 1K pages. In case

** your are in an experimental mood, remove

62 The MuLib Programmer's Manual

** these comments... (-:

** MCXTAG_PAGEBITS,13,

*/

MCXTAG_ERRORCODE,&error,

/* and deliver an error code */

TAG_DONE)) {

/* I don't check here for an error, even though

** I should. The library will build the context,

** provided there is enough memory and the

** parameters are valid for the hardware, but

** "error" should be checked for problems the

** library found. This is only required if you

** tried to make a table setup different to the

** default - here the 8K pages. "error" should

** be checked for CCERR_UNALIGNED. In this case,

** the mmu.library had to round some descriptors

** heavely to be 8K aligned and the resulting

** page setup is most likely not what you want.

** For example, MAPP_REMAPPED pages have been

** trimmed, and the setup is therefore incorrect

** at the boundary.

*/

/* Find out the page size of this Context. */

size=GetPageSize(privctx);

Printf("Getting the new page size. "

"It is 0x%lx bytes.\n",size);

/* allocate a test page */

testpage=AllocAligned(size,MEMF_PUBLIC,size);

if (testpage) {

/* Find out the physical location of

** this page. Note that we use the

** public context since this is the

** context we're running in. The other

** context has not yet been loaded.

*/

physical=testpage;

psize=size;

Printf("Allocating a test page.\n");

PhysicalLocation(ctx,(void **)&physical,&psize);

if (psize==size) {

/* remap (mirror) it to pother. This is just

Building and Adjusting Contexts 63

** for demonstrational purposes.

*/

Printf("Mirroring the page at 0x%08lx "

"(0x%08lx phys.) to 0x%08lx\n",

testpage,physical,pother);

if (SetProperties(privctx,MAPP_COPYBACK|MAPP_REMAPPED,

~0,pother,size,

MAPTAG_DESTINATION,physical,

TAG_DONE)) {

/* the above call modified only the software abstraction

** level. Now rebuild the MMU tree for the private

** context to reflect the changes

*/

Printf("Building a new MMU tree for the "

"private context...\n");

if (RebuildTree(privctx)) {

/* and run the test */

RunTests(privctx,testpage,(UBYTE *)pother);

/* all the rest is shutdown code */

} else Printf("Can't rebuild the tree.\n");

} else Printf("Failed to setup memory remapping.\n");

} else Printf("Can't handle fragmented memory.\n");

/* release the test page */

Printf("Releasing the test page.\n");

FreeMem(testpage,size);

} else Printf("Failed to allocate a test page.\n");

/* ... and the context */

Printf("Releasing the private context.\n");

DeleteMMUContext(privctx);

} else Printf("Failed to build the MMUTaskTest.\n");

}

/* RunTests */

void RunTests(struct MMUContext *privctx,

UBYTE *testpage,UBYTE *pother)

{

struct Process *proc;

struct Message *msg;

64 The MuLib Programmer's Manual

struct Task *testtask,*mytask;

struct MsgPort *testport;

int i;

/* given the MMU context created above,

** create a new task

** and run it in this context

*/

/* Build a message with our process port

** as reply port. I'm here to lazy to

** setup a message port since we already

** have one.

*/

mytask=FindTask(NULL);

Printf("Building a new IO request for the test.\n");

msg=CreateIORequest(

&(((struct Process *)mytask)->pr_MsgPort),

sizeof(struct IORequest));

if (msg) {

/* build a new process. It will start in the

** default public context, but we will attach

** it to the private context as soon as it

** is set up.

*/

Printf("Creating a new task, in the public context.\n");

if (proc = CreateNewProcTags(NP_Entry,&TestProc,

NP_CurrentDir,NULL,

NP_StackSize,512,

NP_Name,"MuContextTest.task",

NP_Priority,0,

NP_ConsoleTask,NULL,

NP_HomeDir,NULL,

NP_CopyVars,FALSE,

TAG_DONE)) {

/* Get the task (uhm, complicated) and its

** process message port we use here for

** communications

*/

testtask=&(proc->pr_Task);

testport=&(proc->pr_MsgPort);

/* This is the trick: Let the tast enter the

** private context. From now on, the library will

Building and Adjusting Contexts 65

** exchange MMU trees on task switches,

** performing TRUE "context switches".

*/

Printf("Let the task enter the private context.\n");

if (EnterMMUContext(privctx,testtask)) {

/* This demonstrates that the library keeps

** caches consistently across contexts. They

** will be flushed correctly on a context

** switch. We pass a stupid message to the

** testtask, get it modified there and print

** it here.

*/

Printf("Setup a test string.\n");

strcpy(testpage,"A silly test.\n");

/* print the original */

Printf("%s",testpage);

msg->mn_Node.ln_Name=pother;

for (i=0;i<10;i++) {

/* pass over the message to the test task */

Sync(testport,msg);

/* print the result */

Printf("%s",testpage);

/* and restore the final A */

*testpage='A';

}

} else Printf("Failed to add the test "

"task to the context.\n");

/* tell the task to commit suicide. It will

** remove itself from the private context.

** This step is important and must be performed

** somewhere, or you'll have a memory leak.

*/

Printf("Signalling the task to unload.\n");

msg->mn_Node.ln_Name=NULL;

Sync(testport,msg);

} else Printf("Can't run child task.\n");

66 The MuLib Programmer's Manual

Printf("Clean up the message.\n");

DeleteIORequest((struct IORequest *)msg);

} else Printf("Can't build communication message.\n");

}

/* Sync */

void Sync(struct MsgPort *destination,struct Message *msg)

{

struct Task *mytask;

struct MsgPort *port;

/* naive sync between the calling task and the

** background task

*/

mytask=FindTask(NULL);

port=&(((struct Process *)mytask)->pr_MsgPort);

PutMsg(destination,msg);

WaitPort(port);

GetMsg(port);

}

/* TestProc: The main loop of the detached task */

void __saveds TestProc(void)

{

int i=0;

struct Message *msg=NULL;

struct MsgPort *port;

/* this is now the test task. Note that we have

** here our own MMU table.

*/

port=&(((struct Process *)(FindTask(NULL)))->pr_MsgPort);

for(;;) {

WaitPort(port);

msg=GetMsg(port);

/* get the next message */

/* end? If so, commit suicide */

if (msg->mn_Node.ln_Name==NULL)

break;

/* if not, just do something to make us known

** to the user

*/

(*(msg->mn_Node.ln_Name)) += i;

i++;

Building and Adjusting Contexts 67

ReplyMsg(msg);

}

/* The next step is important: We shut down,

** and hence have to

** leave the private context.

*/

LeaveMMUContext(FindTask(NULL));

/* We're done. Make sure main doesn't unload

** us before we're shut down.

*/

Forbid();

ReplyMsg(msg);

}

7.4 Adjusting an Existing Context

Most of the Context parameters can be read back after the Context has been created, and some of

them are even adjustable after creation. It's the job of GetMMUContextData() and SetMMU-

ContextData() to grant access to these internals of the Context. The function

struct MMUContext *ctx;

SetMMUContextData(ctx,...);

takes a pointer to the Context, and a list of tag items. It accepts a subset of the tag items de�ned

for CreateMMUContext() in the last chapter, namely those which are marked as set-able.

Its counterpart is GetMMUContextData(): It reads Context speci�c parameters, one at a

time:

struct MMUContext *ctx;

ULONG parameter;

option = GetMMUContextData(ctx,parameter);

The parameter argument is one of the get-able tag ids de�ned for CreateMMUContext(), as

in the chapter above. Note that this call is not tag-based. It accepts a single tag id and returns a

single result, namely the current setting of the speci�ed option.

Some additional tag ids are accepted as well. Some of them provide some kind of internal

information you really shouldn't care about, and which might be of some interest for debugging

software only; as all other tag ids, they are de�ned in mmu/mmutags.h:

MGXTAG_PAGESIZE Returns the page size in bytes. Therefore, the function calls

GetMMUContextData(ctx,MGXTAG_PAGESIZE) == GetPageSize(ctx)

are identical. UnlikeMCXTAG_PAGEBITS, this is not an exponent. The former speci�es

the page size in bytes, the latter the number of bits required to address one page. Obviously,

we have pagesize = 2

bits

.

MGXTAG_REMAPSIZE Returns the worst-case alignment restrictions for remapped memory

in exec memory free lists. This is identical to the RemapSize() function we will discuss in

detail below.

68 The MuLib Programmer's Manual

MGXTAG_PARENT In case this context is a shared context that is setup by means of MGX-

TAG_SHARE, return the pointer to the parent context. Otherwise, returns NULL.

MGXTAG_ROOT Returns the pointer to the root level of the true hardware MMU descriptors.

The result is a ULONG *. This tag item is only provided for debugging software, you never

need to touch this yourself.

MGXTAG_CONFIG Returns a poiner to the MMUCon�g structure which is strictly read

only. This structure is de�ned in mmu/config.h and contains the setup for all MMU registers

in case this Context gains the CPU (or rather, the MMU). Since this structure is only of some

interest for debugging software, it is not explained here in detail. Just leave it alone.

7.5 Function Reference

As usual, we conclude this chapter with the functions explained so far:

Table 6: Context Setup and Manipulation Functions

MuLib function Description

CreateMMUContext() Build a new Context

DeleteMMUContext() Dispose a Context

GetMMUContextData() Read Context parameters

SetMMUContextData() De�ne Context parameters

Building and Adjusting Contexts 69

8 Mapping Lists

The MuLib does not provide functions to reserve or allocate system addresses, for example to reserve

them as addresses for �virtual memory�. It does not implement these functions because it is not the

job of this library to do so; the MuLib is considered as a low-level interface to the MMU, and it is up

to a software wrapper on top of the MuLib to do so. However, the MuLib o�ers functions to simplify

the implementation of these features by making its own �MMU list� management functions available

to the outside. These so called �mapping lists� do not have any in�uence on the MMU setup at all,

they are a purely administrational tool for e�ective MMU list management. The same functions

are used by the MuLib itself to implement the high-level MMU setup calls like SetProperties().

Mapping lists can be seen as the basic tool to hold the �properties� of the address space, hence they

implement a memory map in an abstract way. A memory map assigns a set of �property �ags� to

each address in the memory map, very much like the property �ags used in Context manipulation,

however, the meaning of most of these �ags is up to you because they are never interpreted by the

MuLib mapping list management functions themselves.

The mapping lists are handled by two basic objects: TheMappingList and theMappingNode,

the contents of the MappingList. Both objects are extensions to the exec lists as de�ned in

exec/nodes.h and exec/lists.h.

The MuLib includes do not de�ne a structure for the �rst object; just use it as a struct MinList

*, but never allocate or release these lists yourself because the MuLib might de�ne some internal

�elds in these lists which are intentionally not documented, and it might use a private memory pool

to optimize memory management. Your program should simply use a struct MinList * whereever

you need to hold one of these lists.

8.1 Creation and Deletion of Mapping Lists

The MuLib o�ers three functions to build mapping lists:

struct MinList *maplist;

maplist = NewMapping();

creates a new mapping list which is completely empty. The complete 4GB address space managed

by the list will be set to MAPP_BLANK.

The function call

struct MinList *maplist,*source;

maplist = DupMapping(source);

however, creates a full duplicate of an already existing mapping list. It comes in a special form for

Contexts:

struct MinList *maplist;

struct MMUContext *ctx;

maplist = GetMapping(ctx);

This function call runs a DupMapping() on the Context implemented mapping list, hence creates

a duplicate of the high-level memory map de�ned by the Context passed in. We discussed this

function already in the �Working on Cotexts� chapter.

All mapping lists are released in the same way, namely by

70 The MuLib Programmer's Manual

struct Context *ctx;

struct MinList *maplist;

ReleaseMapping(ctx,maplist);

The Context argument of this function is no longer used, though.

In fact, these functions have been de�ned already when discussing Context manipulation. They

have been used to make a backup of the high-level setup of the Context setup, and this is what

GetMapping() does, indeed: It creates a duplicate of the mapping list within the Context which

de�nes the property �ags for each address in the address space. Finally, ReleaseMapping() has

been used to dispose this backup again.

What You Get is not What You See. Mapping lists are, even though they appear as

MinLists, not MinList structures. Please never ever try to allocate or release these

structures yourself, or you will mess up the internal memory management of the MuLib

� and cause a �guru� most likely.

8.2 Mapping Nodes

A mapping list holds nodes much like Exec lists hold nodes, namely as doubly linked list with

�header node�, which is the list structure itself. Each node on this list is called a �mapping node�,

and its structure is de�ned in mmu/context.h:

struct MappingNode {

struct MappingNode *map_succ;

struct MappingNode *map_pred;

ULONG map_Lower; /* lower address */

ULONG map_Higher; /* higher address, inclusive */

ULONG map_Flags; /* internal use only. */

ULONG map_Properties;/* your property flags */

union {

void *map_UserData; /* your data if invalid or swapped */

void *map_Page; /* destination page if bundled */

LONG *map_Descriptor;/* ptr to a descriptor */

LONG map_Delta; /* added to logical if remapped */

ULONG map_Mask; /* share mask for MAPP_SHARED */

} map_un;

};

As for mapping lists, never allocate this structure yourself. The MappingNode structure might

hold more components than de�ned above. Furthermore, it is stricly read only. The only way to

access these nodes is by calling MuLib functions.

A mapping list contains therefore an arbitrary number of mapping nodes, de�ning the properties

of each byte in the 4GB address space the MC68K family has to o�er. This list is ordered by the

map_Lower �eld in the structure above, de�ning the lower end of the address region each mapping

node keeps care of. The list is not allowed to contain overlaps or holes, i.e. each byte in the 4GB

address space must be handled by one and exactly one mapping node.

Let's start with a brief description of the components of this structure:

map_succ,map_pred Used for linking the mapping nodes together in the same way nodes on

the Exec lists are linked.

Mapping Lists 71

map_Lower The lower base address of the range of addresses that is managed by this node.

Mapping nodes are sorted by this lower address.

map_Higher The upper end of the range of addresses managed by this node. This address is

inclusive. Hence, a mapping node responsible for 4K of memory starting at 0x1000 will have

a map_Lower of 0x1000 and a map_Higher of 0x1fff. Therefore, the last mapping node

in a mapping list has map_Higher set to 0xffffffff.

map_Flags These �ags are for internal use only. Do not touch them in any way. They are

intentionally undocumented.

map_Properties This is the place where the �property �ags� like MAPP_CACHEINHIBIT

are stored. As long as you never want to transfer these settings to a true Context, the meaning

of most of these �ags is up to yourself.

map_un This union keeps some user speci�c data for some special pre-de�ned property �ags.

Namely,

map_UserData keeps user speci�c data in case the MAPP_INVALID or, alternatively, the

MAPP_SWAPPED property �ag is set.

map_Page keeps the physical address of the destination page for MAPP_BUNDLED pages.

map_Descriptor keeps the address of the page descriptor for MAPP_INDIRECT pages.

map_Delta This is a special case for MAPP_REMAPPED pages. Unlike what you might

expect, the property node does not keep the physical destination forMAPP_REMAPPED

pages. Instead, it keeps the di�erence between the logical source address and the physical

destination address. You get the physical destination address by the formula

physical = node->map_un.map_Delta + node->map_Lower

This might seem strange, but it was really easier to manage remapping like this.

map_Mask In case theMAPP_SHARED property �ag is set, this mask de�nes which property

bits of the parent will be shared by this child. This mask is and'ed with the property �ags

of the parent, and the result is binary or'ed with map_Properties of this structure to form

the �nal property �ags of the child.

The map_un union is unused for all other property �ags.

To give an example for the application of these mapping nodes: The �MuScan� program copies

the Context mapping list by GetMapping(), and then prints the contents of all mapping nodes in

this duplicate to the console by analyzing the structure above.

The MuLib implements the following functions to work on property lists:

struct MinList *from,*to;

ULONG base,length,mask;

BOOL fine;

fine = CopyMapping(from,to,base,length,mask);

This function transfers properties from one mapping list to another and �lters them thru a mask. A

1-bit in the mask copies the corresponding property bit from the source to the destination, a 0 bit

leaves the destination intact. The length parameter indicates the size of the memory block whose

72 The MuLib Programmer's Manual

properties are to be transfered. As a special case, length = 0 and base = 0 means to transfer the

full list.

This function has an analog which takes a Context instead of a mapping list as source. It is

otherwise identical:

struct MMUContext *ctx;

struct MinList *to;

ULONG base,length,mask;

BOOL fine;

fine = CopyContextRegion(ctx,to,base,length,mask);

Like all other MuLib calls, this and the previous functions don't leave you with an unusable mapping

list in case it failed. Either, the resulting list will re�ect all the requested changes, or the destination

list remains unmodi�ed.

And last but not least, another analog which takes a mapping list as source and a Context as

destination:

struct MMUContext *ctx;

struct MinList *from;

ULONG base,length,mask;

BOOL fine;

fine = SetPropertiesMapping(ctx,from,base,length,mask);

This is therefore the list-based analog of SetProperties(); instead taking parameters and tag items

to de�ne the property �ags, they are read from the list passed in. There is, however, also a parameter

and tag based function which operates on mapping lists instead of Contexts. It is almost identical

to SetProperties(), it just takes a mapping list instead of a Context as destination operand, but

returns a di�erent result code:

struct MinList *to;

ULONG flags,mask,lower,size;

int result;

result = SetMappingProperties(to,flags,mask,lower,size,

TAG_DONE);

The result codes are as follows: It returns 0 on failure, much like SetProperties() but either 1

or 2 on success. The special result code 2 means that the mapping list was really altered, whereas

a result code of 1 means that the operation was performed successfully, but the resulting list was

identical to the list the operation started with. This happens, for example, if you tried to set some

property bits which have been set already before.

There is of course a similar call to extract information from a mapping list. It is the list-based

analogue of the Context based GetProperties():

struct MinList *maplist;

ULONG address;

ULONG flags;

flags = GetMappingProperties(maplist,address,TAG_DONE);

Very much like GetProperties(), this call returns the property �ags for the logical address passed

in. Additionally, you may provide pointers to more variables to be �lled in by passing the very same

tag items de�ned for GetProperties().

Mapping Lists 73

8.3 Function Reference

Let's give a brief overview about the mapping list functions:

Table 7: Memory Map Adminstration Functions

MuLib function Description

NewMapping() Allocate a new mapping list

GetMapping() Make a copy of a Context mapping list

DupMapping() Duplicate an existing mapping list

ReleaseMapping() Release a mapping list

CopyMapping() Copy a region from one list to another

CopyContextMapping() Copy a region from a Context to a list

SetPropertiesMapping() Copy a region from a list to a Context

SetMappingProperties() De�ne the mapping of a property list

GetMappingProperties() Read the �ags from a property list

74 The MuLib Programmer's Manual

9 Miscellaneous Functions

In this section, we're going to describe the remaining miscellaneous MuLib functions that do not

belong to any other class. Most of them are related low-level MMU programming and are usually

not required by the arbitrary program.

9.1 Aligned Memory Allocation

Even though the Exec memory allocation functions like AllocMem() guarantee to return LONG

or even quad word aligned memory blocks, this is sometimes not enough. Most MMU functions

operate on �pages� which start at multiples of the page size in memory, and the CPU caches divide

the memory in �cache lines� to four long words each. Therefore, it is desirable to have a function

that allocates memory according to these stricter requirements:

ULONG bytesize,requirements,alignment;

void *mem;

mem = AllocAligned(bytesize,requirements,alignment);

This MuLib function, AllocAligned() is similar to its Exec counterpart AllocMem() except that

it takes one additional parameter de�ning the required alignment: The returned (logical) address

is guaranteed to be a multiple of the alignment parameter passed in. This parameter must be

a power of two, though. As all MMU alignment restrictions ful�ll this requirement, this is not a

restriction for the purpose of the MuLib.

The bytesize and requirements arguments are identical to the corresponding arguments of

AllocMem() and are described in more detail in the Exec autodocs and in the �le exec/memory.h.

Similar to AllocMem(), AllocAligned() returns NULL in case of failure, and memory allo-

cated by means of AllocAligned() is released by FreeMem().

This call requires currently some trickery, its implementation is not �too nice�, but there is

currently not other way, unfortunately. Therefore, to allow future enhancements in the form of

external patches, the MuLib code calls this function over the _LVO library vector meaning that the

internal MuLib memory allocation can be transparently enhanced.

The MuLib provides a second specialized memory allocation function which might prove useful

in a mixed MC68K/PPC environment:

ULONG bytesize,requirements;

void *mem;

mem = AllocLineVec(bytesize,requirements);

This call allocates a memory vector similar to the Exec functionAllocVec() which must be released

with FreeVec() afterwards. The memory vector returned is guaranteed to reside in its own cache

line to avoid cache interactions in a two-processor system. However, the address returned is not

guaranteed to be aligned to a cache line, even though the full vector including the vector length

count and the remaining vector are guaranteed to �ll an even multiple of the cache line size. Before

returning, this function ensures that the vector length count is successfully written out to the

memory such that this information is consistently available to a second CPU. However, if you

specify MEMF_CLEAR, this function does not guarantee that the �zeros� written out by this

function in order to clear the memory region arrived in physical memory. Instead, they may reside

in the cache of the CPU that called this function. If this is a problem for your application, you

have to call the Exec function CacheClearE() or CacheClearU() to ensure that the caches are

properly pushed.

Miscellaneous Functions 75

The line alignment restrictions are currently hard-coded into this function, the cache line size is

�xed to 32 bytes. This happens to be the cache line size of the PPC processors, and twice the cache

line size of the MC68K family.

9.2 Public Memory Remapping

Some special race conditions arise in case you want to link remapped memory back into the exec

free list. It is in general not a good idea to try this as some programs, mainly device drivers, do

not know how to handle this case correctly, even though Exec o�ers support functions for this

case. Therefore, this matter is clearly an advanced feature and should not be tried without all the

necessary precaution.

Remap in Private. If you remap or touch memory, you are urged to allocate this memory

�rst to �reserve� the address range for your purpose. If you really want to setup an Exec

memory pool containing remapped memory, make sure that the attribute �ags of this

memory pool do not have the MEMF_PUBLIC attribute bit set.

Especially, it is no good idea to �defragmentize� the Exec memory pool by remapping two non-adjoint

physical memory blocks to one continuous logical memory block. Even though this technique would

work provided all DMA device drivers would have been written according to the Os rules, namely by

using CachePreDMA() and CachePostDMA(), this protocol is hardly implemented correctly

at all and one shouldn't expect this trick to work at all. Note however that the MuLib itself could

happily work in this environment as it knows, internally, the di�erence between physical and logical

addresses.

However, the hardware MMU descriptors have to ful�ll even stronger alignment restrictions than

the MMU pages, and they usually can't be fragmentated. Hence, if you really really have to remap

parts of the exec free memory pool, it is not enough to align the boundaries of this pool to the page

size returned by GetPageSize(). This would break the MuLib MMU descriptor allocation routines

heavely � they will cause �guru� in case this situation is detected. Instead, the tougher alignment

restrictions must be obtained by

ULONG remapsize;

struct MMUContext *ctx;

remapsize = RemapSize(ctx);

Please be prepared that this will return a size considerably larger than a page size.

Another restriction when remapping public memory is that the remapped memory must remain

available under its physical address as well. This is, the physical address of the remapped memory

must remain valid, because the MuLib has to setup and write to the physical addresses from time

to time � as for example when constructing descriptors � and does not disable the MMU to avoid

the overhead.

9.3 Determinating the MMU Type

For miscellaneous purposes, the MuLib o�ers a function to check which MMU type is available, and

whether a MMU is available at all:

char type;

type = GetMMUType();

This returns a single character specifying the MMU type detected in the running machine.

76 The MuLib Programmer's Manual

Happy Without MMU? Unlike common believe, the MuLib will open even on systems

without any MMU. Some of its function calls will even work correctly, as for example the

memorymap administration functions which do not require a workingMMU in hardware.

However, the low-level MMU functions will return a failure code. It is therefore important

to check return codes properly, or to check whether a MMU is available in �rst place.

This function is currently able to detect the following MMU types, de�ned in mmu/mmubase.h:

MUTYPE_NONE No working MMU has been detected.

MUTYPE_68851 The library detected a 68020 with an external 68851 MMU.

MUTYPE_68030 A 68030 CPU with internal MMU was found in the system.

MUTYPE_68040 The internal 68040 MMU.

MUTYPE_68060 The 68060 MMU.

This function does currently not care about the PPC processors and their internal MMUs.

Beware of Economy Class. It is unfortuntaly not enough to check the processor type in

SysBase->AttnFlags to second-guess the type of the MMU which might be available.

Motorola produced so called �EC� processors � where �EC� is short for �Embedded

Controller� � which lack the build-in MMU of the corresponding full processors. Exec

is not able to tell them apart, but the MuLib is. Hence, it is indeed possible that the

AttnFlag �eld indicates a 68030 but GetMMUType() returnsMUTYPE_NONE.

This is no contradiction. In principle, it is even possible to equip an 68EC030 with an

external 68851 MMU, even though the library does currently not handle this con�gura-

tion. In principle, a 68020 or 68030 based system could even provide multiple external

MMUs, but there is no Amiga board that makes use of this possibility, and the MuLib

does not support it at all.

9.4 Reprogramming the MMU Temporarely

For some low-level operations it is desireable to disable or reprogram the MMU temporarely. Howe-

ver, note that you really can't run large subroutines in this state as even the Os might be absent. You

are only able to call a tiny subroutine in supervisor mode, with all interrupts disabled. Therefore,

the routine has to be better quick!

ULONG result;

void *proc;

result = WithoutMMU(proc);

This function calls the subroutine passed in as proc with the MMU and all interrupts disabled.

Therefore, proc has to be a physical address. The subroutine must end with an RTS to return to

the calling code.

The called routine has full access to all registers, it will be completely register-transparent.

Whatever was left in the CPU registers when calling WithoutMMU() will be availble to this

routine, and whatever will be left in the CPU registers by this routine will remain in the registers

after WithoutMMU() when your routine returned. Note that this is the only way to guarantee

correct parameter passing as it is not clear whether the logical addresses used by the caller are

identical to the physical addresses seen with the MMU disabled.

Due to the very nature of this routine, the CPU caches have to be disabled temporarely as well.

Miscellaneous Functions 77

Where's the Kickstart? Because the MMU is disabled by this call, it is not at all clear that

the Os image doesn't vanish as well, or is maybe exchanged by a completely di�erent Os

image. Therefore, not a single Os function can be safely called within your subroutine.

The MuLib o�ers a second function of the same �avour, namely

ULONG result;

void *proc;

result = RunOldConfig(proc);

It is identical to WithoutMMU(), including all the restrictions, except that it doesn't clear the

MMU setup, but it loads the MMU with the setting the MuLib found active when it was loaded.

This might have been an empty MMU setup as well, dependent on how the user installed the MuLib.

9.5 Setting the Physical Bus Error Handler

It is not the purpose of the MuLib to handle physical bus errors, i.e. exceptions generated by external

hardware due to access violations. The MuLib cares only about the MMU generated exceptions and

passes all other exceptions thru to the exception handler which have been installed before the MuLib

has been loaded. This is typcially the Exec exception handler which will sooner or later run into

a �guru�. In case this is not desirable, you can tell the MuLib to call a di�erent exception handler

instead:

void (*NewExcept)();

void (**oldexcept)();

SetBusError(NewExcept,oldexcept);

The SetBusError() function installs the newexcept handler and keeps the address of the old

handler in oldexcept. The new handler must be ready to run immediately. Furthermore, the MuLib

establishes no protocol how physical bus errors should be shared amongst several applications, if

this is desirable at all. This is not the purpose of the library.

The �handler� is not an MMU-type exception handler at all; the MuLib jumps into this handler if

it detects an exception it can't handle or it is not responsible for, restoring the exception stack frame

and all CPU registers. Therefore, your code will be called �as if� you installed your handler directly

in the exception vector base of the MC68K processor. This means, speci�cally, you have to save the

registers you have to touch, and you have to exit either by an RTE or by calling the old exception

handler. Avoid hacking into the CPU exception vector base directly because some MMU

related exceptions should be handled quickly, for example AbsExecBase access emulation. The

MuLib exception handler must be called �rst.

9.6 Function Reference

We present again the reference for the miscellaneous functions:

Table 8: Misellaneous Functions

AllocAligned() Allocate a memory block aligned

AllocLineVec() Allocate a vector aligned to cache lines

RemapSize() Get alignment for remapped public memory

GetMMUType() Check for the available MMU

WithoutMMU() Call a subroutine with the MMU disabled

RunOldCon�g() Call a routine with the previous MMU setup

SetBusError() Install a physical bus error handler

78 The MuLib Programmer's Manual

References

[1] Motorola MC68030UM/AD Rev. 2: MC68030 Enhanced 32-Bit Microprocessor User's Manual,

3rd ed. Prentice Hall, Englewood Cli�s, N.J. 07632 (1990)

[2] Motorola MC68040UM/AD Rev. 1: MC68040 Microprocessor User's Manual, revised ed. Mo-

torola (1992,1993)

[3] Motorola MC68060UM/AD Rev. 1: MC68060 Microprocessor User's Manual. Motorola (1994)

[4] Motorola MC68000PM/AD Rev. 1: Programmer's Reference Manual. Motorola (1992)

[5] Yu-Cheng Liu: The M68000 Microprocessor Family. Prentice-Hall Intl., Inc. (1991)

[6] Dan Baker (Ed.): Amiga ROM Kernal Reference Manual: Libraries. 3rd. ed. Addison-Wesley

Publishing Company (1992)

[7] Dan Baker (Ed.): Amiga ROM Kernal Reference Manual: Includes and Autodocs. 3rd. ed.

Addison-Wesley Publishing Company (1991)

[8] Ralph Babel: The Amiga Guru Book. Ralph Babel, Taunusstein (1993)

REFERENCES 79

