The MMU Library

Programmer’s Manual

THOMAS RICHTER

Copyright © 2000,2001 by Thomas Richter, all rights reserved. This publication is freely distributable under
the restrictions stated below, but is also Copyright (© Thomas Richter.

Distribution of the publication by a commercial organization without written permission from the author
to any third party is prohibited if any payment is made in connection with such distribution, whether directly
(as in payment for a copy of the publication) or indirectly (as in payment for some service related to the
Publication, or payment for some product or service that includes a copy of the publication “without charge”;
these are only examples, and not an exhaustive enumeration of prohibited activities).

However, the following methods of distribution involving payment shall not in and of themselves be a
violation of this restriction:

1. Posting the publication on a public access information storage and retrieval service for which a fee is
received for retrieving information (such as an on-line service), provided that the fee is not content-
dependent (i.e., the fee would be the same for retrieving the same volume of information consisting
of random data).

2. Distributing the publication on a CD-ROM, provided that

(a) it is reproduced entirely and verbatim on such CD-ROM, including especially this licence agree-
ment;

(b) the CD-ROM is made available to the public for a nominal fee only,
(¢) a copy of the CD is made available to the author for free except for shipment costs, and
(d) provided further that all information on such CD-ROM is re-distributable for non-commercial
purposes without charge.
Redistribution of a modified version of the publication is prohibited in any way, by any organization,

regardless whether commercial or non-commercial. Everything must be kept together, in original and

unmodified form.

DiscLAIMER: THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT ANY WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHAN-
TABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, THE AUTHOR DOES NOT WARRANT,
GUARANTEE, OR MAKE ANY REPRESENTATION REGARDING THE USE OF, OR THE RESULTS OF THE USE
OF, THE INFORMATION CONTAINED HEREIN IN TERM OF CORRECTNESS, ACCURACY, RELIABILITY, CUR-
RENTNESS, OR OTHERWISE; THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY IS ASSUMED SOLELY BY
THE USER. SHOULD THE INFORMATION PROVE INACCURATE, THE USER (AND NOT THE AUTHOR) ASSUMES
THE EITHER COST OF ALL NECESSARY CORRECTION. IN NO EVENT WILL THE AUTHOR BE LIABLE FOR
DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INAC-
CURACY IN THIS PUBLICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Amiga is a registered trademark, Amiga-DOS, Fzec and Kickstart are registered trademarks of Amiga

Intl. Motorola is a registered trademark of Motorola, inc. Uniz is a trademark of AT&T.

ii The Mulib Programmer’s Manual

Contents

1

Introduction to the MuLib
1.1 Supported Hardware
1.2 Basic Concepts it e e e e e e e

MuLib Contexts and Exec Tasks

2.1 Looking for Contexts e
2.2 Attaching Tasks to Contexts
2.3 Advanced Information about Contexts and Tasks
2.4 Function Reference

Working on Contexts

3.1 Comceepts L e
3.2 High-level MMU Setup o e
3.3 Context Locking e
3.4 Sharing of MMU Tables
3.5 Modifying More Than One Context at Once
3.6 Function Reference

Low-level MMU Setup

4.1 Defining Properties on the Low Level 0.0 0.0 o0
4.2 Reading the Used and Modified Flags
4.3 Reading and Writing Indirect Descriptors
4.4 Shared Indirect Descriptors L
4.5 Function Reference e

DMA Support Functions

5.1 Logical to Physical Translation Functions
5.2 DMA Memory Control Functions o
5.3 DMA and Cache Control functions o
5.4 Function Reference

MMU Exception Handling

6.1 Page Fault and Segmentation Fault Handlers
6.2 Page Access Handlers
6.3 Switch and Launch Handlers o
6.4 Message Hooks L L
6.5 Function Reference L

Building and Adjusting Contexts

7.1 Creating a New Context
7.2 Disposing Contexts oL
7.3 Context Example Codeo
7.4 Adjusting an Existing Context L o
7.5 Function Reference

Mapping Lists

8.1 Creation and Deletion of Mapping Lists
8.2 Mapping Nodes L e e
8.3 Function Reference

CONTENTS

18
18
19
19
31
31

32
32
33
35

38

39
41
49
51
51

54

55
55
59
60
68
69

70
70
71
74

9

v

Miscellaneous Functions

9.1 Aligned Memory Allocation
9.2 Public Memory Remapping oo
9.3 Determinating the MMU Type o e
9.4 Reprogramming the MMU Temporarely
9.5 Setting the Physical Bus Error Handler
9.6 Function Reference L

The Mulib Programmer’s Manual

75
75
76
76
7
78
78

1 Introduction to the MuLib

All “modern” Amiga computers come with a special hardware component called the “MMU”. This
abbreviation stands for Memory Management Unit. The MMU is a very powerful piece of hardware
that can be seen as a translator between the CPU that carries out the actual calculation, and the
surrounding hardware: memory and 10 devices. Each access of the CPU to fetch or write data from
the hardware or memory is filtered by the MMU, checked whether the memory region is available,
write protected, can be hold in the CPU internal cache and more. The MMU can be told to translate
the addresses as seen from the CPU to different addresses, hence it can be used to “re-map”, i.e.
mirror parts of the memory without actually touching the memory itself.

A series of programs has been and is available that make use of the MMU: First of all, it’s needed
by the operating system to tell the CPU not to hold “chip memory”, as used by the Amiga custom
chips, in its cache; second, several tools re-map the Kickstart ROM to faster 32Bit RAM by using
the MMU to translate the ROM addresses — as seen from the CPU — to the RAM addresses where
the image of the ROM is kept. Third, a number of debugging tools make use of it to detect accesses

to physically unavailable memory regions, and hence to find bugs in programs; amongst them is the
“Enforcer” by Michael Sinz. Fourth, the MMU can be used to create the illusion of “almost infinite
memory”, with so-called “virtual memory systems”. Last but not least, a number of miscellaneous
applications have been found for the MMU as well, for example for display drivers of emulators.

Unfortunately, the Amiga Os did not provide any interface to the MMU so far, everything boils
down to hardware hacking and every program hacks the MMU tables as it wishes. Needless to say
this prevents program A from working nicely together with program B, Enforcer with FastROM or
VMM, and other combinations have been impossible up to now.

This has to change! There has to be a documented interface to the MMU that makes accesses
transparent, easy and compatible. This is the goal of the “mmu.library”. In one word, compatibility.

1.1 Supported Hardware

The MuLib is able to program all MMUs of the Motorola MC68K processor family: The 68851,
which is the external MMU of the 68020 in the form of a coprocessor, and the build-in MMUs of
the 68030, the 68040 and the 68060. Motorola offered an external MMU for the 68010 quite a while
ago, the 68451, but up to my knowledge it has never been used in any Amiga model or third-party
expansion. It is unsupported by the library, mainly because it is conceptually very different from
the other four MMU types which, in fact, have been used in the Amiga here and there.

1.2 Basic Concepts
The basic object the MMU library handles is the MMUContext or short Context. It keeps the

complete configuration of the MMU. If you're familiar with other Amiga hardware components,
one might say that the MMUContext is what the ViewPort is for the graphics engine. Unlike the
ViewPort, however, the Context does not have a documented structure, there are only functions to
operate on Contexts. Since the Tasks handled by Exec really share all their memory, one should
better think of them as the threads of other operating systems, like Unix: They run all in the
same environment and share all the data and all the addresses amongst them. A Context, however,
defines a unique address space, and different Contexts run “independent” of each other. There are
means to protect data from one context to be seen from another, or to write-protect them at least.
Shared memory concepts are possible, too. Each Exec Task “belongs to” or “runs as a part of” a
Context, and as Exec schedules Tasks, it automatically schedules Contexts, too. If a Task belonging
to a different Context gains the CPU, a “Context swap” is initiated by the MuLib in addition.
Therefore, a “Context” should be seen as the AmigaOs equivalent of a Unix process.

As soon as the MuLib is loaded, two Contexts will be build. For first, the so called “public
Context”. This Context describes the global address space all Amiga applications are part of,

Introduction to the Mulib 1

unless they decide to detach themselves from the public Context. You usually need not to enter
the public Context explicitly; as soon as a new Task is created, it will belong to this Context
anyhow; you furthermore need not to create this Context, it will be build by the library on startup.
The second Context is the “public supervisor Context”. This is the Context “supervisor code”,
mostly system maintenance code, runs in. Note that this is different from the old “Exec world”
where user code and supervisor code shared a common environment. The MuLib enforces a distinct
user/supervisor model. Especially, this means that you may have data available in supervisor mode
which is not available in user mode. As for the “public Context”, you need not to create the “public
supervisor Context” as it will be build by the library anyways on startup. To conclude:

o Each Exec Task belongs to a MMUContext. Without further calls to the MuLib, it belongs
to the public Context.

o The MuLib distinguishes between user and supervisor mode accesses.
o Contexts are schedules as the Tasks belonging to them are scheduled.

o User mode code runs in the MMUContext of the currently active task. Supervisor code runs
in the supervisor Context of the currently active user Context. The supervisor Context of the
public Context is the public supervisor Context.

o Contexts come in pairs. Each user mode Context comes with a corresponding supervisor mode
Context. Several user mode Contexts may share one supervisor mode Context, but not the
other way round.

o Oun startup, the MuLib will build two Contexts, the public Context and the public supervisor
Context.

From the user’s point of view, the Context is “just a handle” to the administration data keeping
all the information required to swap the MMU setup. It does not have a documented structure,
even though it is referred as a struct MMUContext * for all the library functions.

2 MuLib Contexts and Exec Tasks

2.1 Looking for Contexts

The MuLib provides several calls to get handles to Contexts. The following library vectors are
available:

struct MMUContext *xctx;
struct Task *task;
ctx = CurrentContext(task);

This returns the user mode Context the provided Task belongs to. You may pass in NULL to get
the Context the current Task is part of. So to say, CurrentContext(NULL) is pretty much the
MulLib equivalent of FindTask(INULL). The following

struct MMUContext *public;

public = DefaultContext();

however, returns the public user Context. It need not to be identical to the result code of Current-
Context(NULL) because the current task might have been “detached” from the public context
and might run in its own environment. Unlike CurrentContext(), DefaultContext() does not
take any arguments.

2 The MulLib Programmer’s Manual

struct MMUContext *ctx,*sctx;

sctx = SuperContext(ctx);

The SuperContext() call returns the corresponding supervisor mode Context for the user mode
Context passed in. Hence,

SuperContext (CurrentContext (NULL)) ;
returns the current supervisor Context, and
SuperContext (DefaultContext());

returns the public supervisor Context. None of these calls can fail, the result code is always valid.

2.2 Attaching Tasks to Contexts

Even though each Exec Task is already part of a Context — the public Context, namely you
may want to detach a task from the public Context and may run it as part of a different Context.
Especially, since Exec always creates Tasks in the public Context, this is the only way to run a Task
in its private environment: Namely, create a new Context, create a new Task, and attach the new

Task to the Context. The following call will do this for you:

struct MMUContext *new,*o0ld;
struct Task *task;

old = EnterMMUContext (new,task);

The function EnterMMUContext returns the handle to the Context the task belonged to before
EnterMMUContext() has been called. EnterMMUContext() does not only attach tasks to
private Contexts, it is also able to remove a task from one private Context and to attach it to a
different private Context. If the new argument of EnterMMUContext() is set to NULL, the
task will leave its current Context and will be attached to the public Context.

NULL Means Failure. EnterMMUContext() returns NULL in case it failed. It does
not return NULL in case the task was attached to the public Context before; in this
case, it returns the handle to the public Context. Always remember to check for result
codes.

The MuLib provides a short-hand for removing a task from a private Context and to re-attach it to
the public Context. This is

struct MMUContext *o0ld;
struct Task *task;

old = LeaveMMUContext (task);
The call Leave MMU Context () is fully equivalent to
EnterMMUContext (NULL,..);

It might seem senseless to call EnterMMUContext() with the context argument set to the
public Context because the NULL argument seems to do right the same with less trouble. However,
this is not equivalent. For some of the advanced features of the MuLib, you have to enter a Context
explicitly, regardless of whether you want to detach from the public context or not. EnterMMU-
Context() allocates some internal data structures for the task passed in which are required for
these features, and Leave MMU Context() will release these structures again. The task will use
the same MMU setup in both cases, but the MuLib will keep some additional structures with the
task if the argument is non-NULL. Nevertheless, no matter why you entered a Context, you have
to call LeaveContext() before your Task shuts down.

Mulib Contexts and Exec Tasks 3

2.3 Advanced Information about Contexts and Tasks

To be able to schedule the Contexts, the MuLib makes use of the tc¢_ Launch() and tc_ Switch()
function pointers in the Exec Task structure as soon as you enter a Context — i.e. call EnterM-
MUContext() with a non-NULL argument. This means that these two Exec hooks will be no
longer available for you if you have to make use of the advanced features of the MuLib. They remain
available as long as you never enter a Context, though, and hence the MuLib remains backwards
compatible to those applications that have to play with the two Exec hooks.

The MulLib provides more flexible replacement hooks under the name of “Switch and Launch
Exception Hooks” if you need this feature. Please study the MuLib Exceptions chapter for more
details.

2.4 Function Reference
This chart provides a brief reference to the functions mentioned in this chapter:

Table 1: Context and Task Control Functions

| MulLib function Description |
CurrentContext() Get a handle to the Context of a given Task
DefaultContext() Get a handle to the public Context
SuperContext() Get the handle to a supervisor Context

EnterMMUContext() Attach a task to a Context
LeaveMMUContext() Run a task as part of the public Context

4 The MulLib Programmer’s Manual

3 Working on Contexts

The MuLib provides a series of functions to modify existing Ccontexts, hence to modify the MMU
setup in a easy, straightforward and hardware independent way. All the functions fall in two cate-
gories: Low level and high level calls. The high level calls are very convenient to use, allow rather
abstract modifications on the MMU setup, and provide an easy to use interface. However, the
high-level functions are slow and not interrupt-callable; they must be called from within a task, and
they might break a Forbid() state. High-level calls might fail, due to out-of-memory conditions,
but the high-level functions provide means to “lock” the MMU setup and hence to avoid interactions
in critical situations; error handling functions are available as well. Furthermore, calling high-level
functions does not directly cause a modification of the MMU setup. Instead, all modifications are
recorded, but not written out to the hardware yet. By one call, the changes are translated to the
lower level.

The low level functions, however, write more or less directly to the hardware, causing an instant
change of the MMU setup. They give no control about this modification whatsoever, and they
require a special preparation step by some high-level calls. Furthermore, the low-level functions are
cumbersome to use and not as handy as the high-level routines, and even slower if large modifications
have to be made. However, the low level functions are faster for smaller modifications, and fully
interrupt-callable.

If the high-level routines operate on the low-level, a special hook is provided for the low-level
users to get informed if their setup is about to be overwritten, check the “Page Access Exception
Hook” in the “MMU Exception Handling” section below.

3.1 Concepts

A “MMU Page” is the smallest block of memory individually handled by the MMU. Typically, pages
are 1K or 4K large, but the size depends on the Context and on what the hardware is able to offer.
The 68851 and the 68030 provide page sizes of 256 bytes up to 32K, in powers of two, whereas the
68040 and the 68060 can only handle 4K and 8K pages. Pages start and end always at multiples of
their sizes, i.e. 4K pages start at 4K boundaries. Hence, one should think of the full address space
of 232 bits divided into pages of equal size, adjacent to each other whose boundaries are aligned to
multiples of powers of two. The MuLib function

struct MMUContext *ctx;
ULONG pagesize;

pagesize = GetPageSize(ctx);
will return the page size for the Context passed in.

Seek the Size. Never assume a fixed page size, and never hard-code the page size. The
page size will be different on different Amiga models, and it even may vary from machine
to machine, dependent on the requirements of the MuLib and on the configuration made
by the user.

The MMU is told what to do with each page by a so-called “descriptor”. It’s the MuLib which creates
and modifies these descriptors. However, the way how these descriptors look like depend on the type
of the MMU installed, therefore the MuLib provides an abstraction of the data in the descriptor,
the “Property Flags”. By modifying these flags, you tell the MuLib how it should setup the MMU
descriptors, and hence finally what the MMU will do; the job of the MMU is, for example, to tell
the CPU which addresses are allowed to be kept in a cache for faster access. Another job of the
MMU is to “translate” addresses: The addresses a program uses to access its data are called “logical
addresses” because this is what the program logic sees. The MMU translates the logical addresses

Working on Contexts 5

on a page by page basis to physical addresses — “physical” for the simple reason because these are
the true hardware signals that leave the MMU and run as electrical signals to the RAM and ROM
chip and other hardware. Hence, what appears outside of the MMU is different from the addresses
seen by the program inside. Since two applications might run under two different Contexts, the
very same logical address could be translated to two different physical addresses simply because
the MMU setup is different. This is quite common on Unix machines where the program space for
each application starts at address zero; hence Unix depends heavily on the use of a MMU. A very
simple application for this feature of the MMU is to “re-map” the Kickstart ROM into RAM, which
is accessible faster: What happens here is that the logical addresses of the ROM get translated to
the copy of the ROM in RAM, at a different physical location.

Highly Logical. All the addresses used by the MuLib and its function calls are, unless
noted otherwise, logical addresses. Physical addresses appear only at times where the
distinction has to be made, and only for re-mapping a page of logical addresses to a
different physical address.

3.2 High-level MMU Setup

The following high-level call modifies some of the property flags of one or more pages:

struct MMUContext *ctx;
ULONG flags,mask,lower,size;
BOOL result;

result = SetProperties(ctx,flags,mask,lower,size,TAG_DOl\IE‘.);

This is a tag-based call, some of the property flags require some additional tags passed in, check
the list below for further details. As for all tag-based calls, the tag list must be terminated by
TAG _DONE. There is also a non-stack based call for assembly language, named SetProper-
tiesA (). Please check the autodocs for details.

The parameters for this call are as follows: ctx is a handle to the Context, lower and size
specify the logical address range to be setup. Both arguments must be multiples of the page size
or the call will fail since the MuLib checks this requirement explicitly. The mask argument defines
which property flags are to be changed. Each bit set to one transfers the corresponding bit from
the flags parameter to the MuLib high level abstraction of a MMU descriptor. Finally, flags is the
bit mask of the flags to be set or cleared. The following bits are defined in mmu/context.h:

MAPP_ WRITEPROTECTED This defines the specified region to be write-protected. Especi-
ally, if a program attempts to write into the memory area, an access exception will be generated
and the MuLib will call the segmentation fault exception hooks. This is the “agressive” write
protection as it may generate exceptions. The “defensive” version of this Property Flag is

MAPP_ROM.
MAPP USED Mark the memory as “used”. This is the abstraction of the MMU descriptor “U”

bit which is set by the MMU each time an access to the corresponding page in memory is made.
The MuLib will build the MMU descriptors with the “U” bit set if the MAPP _USED bit on
the high-level is set. Note that reading this bit from the abstraction level by GetProperties()
does not return the actual hardware MMU flag but only the pre-defined value of the “U” bit.
There’s usually little reason to mess with this bit with the high-level functions, just leave it
alone. The only advantage of setting the “U” bit in first place is that this avoids an additional
memory access of the MMU if the memory is accessed for the first time, but this is hardly
noticeable. If you want to check whether a page has been used or not, you must use the
low-level function GetPageProperties() instead. Similary, SetPageProperties() must be
used to set or clear this bit.

6 The MulLib Programmer's Manual

MAPP_ MODIFIED Mark the memory as “modified”. This is the abstraction of the MMU “M”
bit which is set on each write access to the corresponding page. Again, this bit only defines
whether the MuLib high-level functions should build the descriptors with the “M” bit pre-set,

it will not reflect the actual state of the true hardware descriptor. For further details, check
the description of MAPP _USED above.

MAPP CACHEINHIBIT Instruct the MMU to tell the CPU not to keep the corresponding
memory page in cache. This is important if the page contains memory-mapped I/O registers
or memory which is accessed by other hardware in parallel to the CPU, e.g. chip memory or
video RAM. Unlike ordinary memory, these addresses may alter the state without interaction
of the CPU, and a copy of the hardware register in cache might therefore not reflect the true
state.

MAPP SUPERVISORONLY Each access to the specified pages from user code will generate
an access fault and will run the segmentation violation exception hooks. This is currently
implemented by checking whether the Context is a user or a supervisor context, and marking
the pages as invalid for user Contexts. Even though the 68040 and the 68060 MMUs offer a
separate “supervisor only” bit, it is currently not used by the library for consistency to the
68030 and 68851 which do not offer this feature.

MAPP_ USERPAGEO Set the user page attribute 0. The user page attribute of a page appears
as hardware signal at an output line of the CPU and can therefore be used for special hardware
purposes. However, there is currently no Amiga hardware which uses this feature, hence just
leave this bit alone. This bit is ignored by the 68030 and the 68851 anyways.

MAPP_ USERPAGEL1L Set user page attribute 1. As for the MAPP USERPAGEO bit, this
is a special hardware feature only available for the 68040 and 68060, and which is currently
not made use of. Just leave this bit alone.

MAPP GLOBAL The memory region is shared between different contexts. The MuLib makes
currently no use of this flag, and it is available for the 68040 and the 68060 only. Setting this
bit on a 68030 or 68851 driven system is ignored.

MAPP _ BLANK The specified address range is not mapped by the hardware at all, it does
not contain memory nor I/O registers. If this bit is set, read and write accesses to this
area are quietly tolerated and ignored, mainly to work around faulty software and to avoid
exceptions. This works currently by re-mapping the specified range to a blank “dummy” page
which is elsewhere in memory. Since MAPP BLANK cannot generate exceptions, this is

the “defensive form” of MAPP INVALID access control.

MAPP_SINGLEPAGE Tells the MuLib that it must build one hardware descriptor for each
page in the specified region. Especially, this will turn off certain optimizations the MuLib
would have taken to preserve memory, as for example sharing of descriptors. This bit is a
must if you need proper access information in the form of the “used” and “modified” bits, and
it is a must if you want to operate on the MMU descriptors by means of the low-level functions,
i.e. GetPageProperties() and SetPageProperties.

Be Prepared for Low-Level. Accessing MMU descriptors by means of the low-level
functions requires a preparation step, namely, setting the MAPP SINGLEPAGE
bit using the high-level function. This will not only inform the MuLib that it should
allow access to the descriptors, it will also ensure that each page gets its own de-
scriptor, hence makes the low-level functions meaningful in first place. Needless
to say, MAPP SINGLEPAGE pages require more memory in general. Do not
outsmart yourself! Experts might wonder whether this step is really required for

Working on Contexts 7

the 68040 and 68060 MMU which do not implement “early termination descriptors”.
Please feel ensured that it really is.

MAPP COPYBACK If the specified pages are cache-able, i.e. MAPP CACHEINHIBIT
is not set, turn on the copy-back cache. This means that writes of the program will not be
written back to memory immediately, but will be buffered until the cache entry is required
otherwise. This will cause a quite noticeable speedup. This bit will be ignored by the 68030
and the 68851 which do not implement a copy-back cache.

MAPP _INVALID Mark the specified memory range as invalid. Accessing it by either a read or
a write will cause a segmentation violation exception. If the MAPP REPAIRABLE bit is
not set, you may ask the MuLib to keep an additional ULONG with the page which will be
passed to the exception hooks to identify the origin of the exception. Thislong word is specified
by the MAPTAG USERDATA tag, defined in mmu/mmutags.h file. This property flag is
the “agressive form” of MAPP BLANK as it may generate exceptions.

Zero is a Special Number. You are free to mark the first — or so to say, “zeroth” —
page in memory as invalid. The MuLib provides a special kludge to allow accesses
to the global system constant AbsExecBase even with the zero page invalidated, and
it will also emulate accesses to valid chip memory in this range. Needless to say that
the emulation is always slower than the real thing. This kludge can be disabled for
special purposes, and the low memory limit is adjustable. Study the “Building and
Adjusting Contexts” section for details. For the experts: You guessed right, this is
how “MuForce” works.

MAPP_ REMAPPED Tell the MuLib that the physical address is different from the logical ad-
dress and that the accesses to this page should be redirected to “elsewhere”. The lower argu-

ment to SetProperties specifies the logical address to be re-mapped, the physical destination
has to be specified by the MAPTAG _DESTINATION tag item, see mmu/mmutags.h.

MAPP SWAPPED The specified memory area is currently “swapped out” on an external me-
dium like a HD. In case a read or write access to this page is made, the MuLib will generate
a page fault exception and call the “swapper” exception hooks to load the page back into
memory again. If the MAPP REPAIRABLE bit is not set, you may specify an additional
ULONG which is passed to the exception handlers and which could be used to locate the
block on the external medium. This long word is set by the MAPTAG BLOCKID tag

item, see mmu/mmutags.h.

MAPP ROM This is the “defensive” form of MAPP WRITEPROTECTED bit. The spe-
cified memory region is “simulated” read-only memory, write accesses are silently tolerated but
will not alter the memory. Ideal for Kickstart re-mapping to provide a silent write protection
for the ROM image.

MAPP SHARED Shares the corresponding definition with its parent context, given by MCX-
TAG SHARE on context creation, see 7.1. This bit is only available for the mmu.library
releases 43 and above, and is ignored for older releases. Unlike MAPP GLOBAL which
corresponds to a hardware bit for the 68040 and 68060, this is a software driven bit only
which is used for administrational purposes. Additionally, you may give the mmu.library a
mask which properties are to be shared with the parent context. This mask is setup by the
MAPTAG SHAREMASK tagitem and defaults to Oxff£ff££f, i.e. all properties will be
shared with the parent. In case you do not share a specific property, the additional properties
must be binary-or’ed with MAPP SHARED here. Properties that require an additional
data item like MAPP REMAPPED or MAPP SWAPPED cannot be selectively enab-
led and used together with MAPP SHARED. They must be either shared from the parent

8 The MulLib Programmer's Manual

completely, i.e. the corresponding bit must be set in the MAPTAG SHAREMASK, or
must be setup completely separate without MAPP _ SHARED. The MAPP SHARED
property is not available unless the context has been created with MCXTAG SHARE.

MAPP TRANSLATED The specified memory region is — probably partially — under control
of the transparent translation registers. Reprogramming the MMU for this memory area
is therefore ignored by the MMU. Even though this sounds complicated, there’s currently
no need to care about this bit at all because the MuLib tries to get rid of the transparent
translation registers very early at startup by simulating them by a proper MMU setup instead,
and clearing them afterwards. Hence, you will never find this bit set anyhow, and you should
never set this bit manually yourself. Just leave it alone for now.

MAPP _ REPAIRABLE By setting this bit you tell the MuLib that you want to be able to
repair an access to an invalid or write-protected page. The MuLib will then try to obtain
the data that was written to the invalid page and will forward this data to the exception
handler, or it will allow the exception handler to provide the data that should be read-in by
the CPU when accessing the invalid page. Hence, by setting this bit, you could emulate some
hardware registers in the specified range by means of a clever exception handler that absorbs
or provides the data for the hardware registers. If this bit is not set, the MuLib will not always
be able to provide the written-out data or to push back data into the CPU pipeline. Instead,
the exception handler must either abort the access, or must swap in a page to allow the
CPU to retry the access. Since the software support for MAPP REPAIRABLE requires
a lot of work that is not required for virtual memory support, it is recommended to leave

MAPP REPAIRABLE off for these occasions.
Repair Service is Expensive. Even though the MAPP REPAIRABLE bit is a

very powerful feature, it has its price. First of all, access to the CPU pipeline
has to be emulated for most CPUs, which means that this is slow. Furthermore,
the MuLib does not offer any additional page data for MAPP REPAIRABLE
pages, hence MAPP BLOCKID or MAPP USERDATA are not available.
The “MuForce” debugging tool uses this feature to present the data that was written
out on an access fault, and to push back “dummy” data into the faulty program.

MAPP IMPRECISE Only meaningful if MAPP CACHEINHIBIT is set, too, this tells
the 68060 MMTU to be a bit “sloppy” on true physical bus errors. Therefore, this bit should be
set only for memory or I/O areas that cannot generate bus errors, but which cannot tolerate
caching. This bit is safely ignored by all other MMUs. Typically, this bit is set for video RAM,
like the native “chip memory” of the Amiga motherboard or the RAM on graphics cards. This
memory is always valid to access, but it cannot be cached because additional circuits like the
blitter operate on the memory, bypassing the CPU.

MAPP _INDIRECT The corresponding page in memory is handled by a descriptor you con-
structed and your code has full control over. The MuLib will just generate a reference to your
hardware descriptor, but will otherwise not care about it. Hardware descriptors should be build
by the BuildIndirect() and defined by the SetIndirect() call in a hardware-independent
way, and should be read by GetIndirect() only. A hardware descriptor is always four bytes
long, and must be placed at a long word boundary or even at a cache line boundary which
is 16 bytes in case you want to read it back with GetIndirect() later. Its physical address
is specified by the MAPTAG DESCRIPTOR tag item, defined in mmu/mmutags.h. On
access faults, the MuLib will never report your descriptor as the descriptor that caused the
exception, but instead its own “indirect descriptor” that points to your descriptor.

Too Indirect for Beginners. Hardware descriptors are truly powerful because they
are extremely fast. On the other hand, they are very cumbersome to handle, and

Working on Contexts 9

definitely an advanced feature. Don’t try to mess with them unless you know what
you're doing. Study the “Low Level MMU Setup” chapter for details.

MAPP BUNDLED The specified memory range is bundled to one single page in memory, repea-
ted over and over again, filling up the full range. Hence, in a MAPP BUNDLED memory
region, the same physical memory page is mirrored over and over again to a continuous range
of logical addresses.

MAPP_ USERO This bit is strictly for your purposes. The MuLib will completely ignore this
bit, and will keep it for you. It does not correspond to any hardware function of any MMU
at all — don’t mix this with the “user page attribute 0”. These user attributes, along with all
other high-level attributes, are also visible for the low-level functions GetPageProperties()
and related.

MAPP_USERI1 Reserved for public use, similar to MAPP _USERO.
MAPP_ USER2 Again kept free for you.
MAPP_ USERS3 And another one for you.

MAPP NONSERIALIZED Only significant if MAPP CACHEINHIBIT is set, too, and
only read by the 68040 MMU, safely ignored by all others. This bit tells the 68040 that it
may re-order accesses to the specified memory range in order to speed up the bus throughput.
Hence, accesses on the physical bus may appear in a different order than the accesses made by
software. This bit should not be set for true hardware mapped I/0, but a typical application
would be video RAM like the native “chip memory” or the RAM on graphics boards. It can’t
be cached because custom hardware like the blitter accesses it by means of DMA, but the
order of accesses does not matter.

MAPP_ 10 The corresponding memory range are memory mapped I/O registers. This bit has
no influence on the MMU setup at all, but it is read by tools like “MuForce” or the “disas-
sembler.library” to avoid accesses to this “memory” for hex dumps or disassembling. Custom,
non-auto-configuring hardware should have this bit set to inform these tools that they should
keep their hands off.

The counterpart of SetProperties() is the GetProperties() function: It returns the property
flags for a given logical address:

struct MMUContext *ctx;
ULONG flags,address;

flags = GetProperties(ctx,address,TAG_DONE) ;

Unlike SetProperties(), the address need not to be aligned to a multiple of the page size. However,
the returned properties will only depend on the page the address belongs to. Additionally, the
following tags can be passed in, defined in mmu/mmutags.h:

MAPTAG DESTINATION Requires a pointer to void * as argument. This pointer is filled in
with the corresponding physical address of the logical address passed in, regardless of whether

remapping, i.e. MAPP REMAPPED, is enabled or not.

MAPTAG BLOCKID Requires a pointer to a ULONG as argument. This ULONG is filled
in if the page is swapped out, returning an identifier which was selected by SetProperties().
Only available for MAPP SWAPPED pages.

10 The MulLib Programmer’s Manual

MAPTAG USERDATA Requires a pointer to a ULONG as argument which will be filled with
the “cookie” of MAPP INVALID pages, if they have been set by SetProperties() in first

place.

MAPTAG_ DESCRIPTOR. Takes a pointer to a ULONG * as argument which is filled for
MAPP _INDIRECT pages with the pointer to the true physical hardware descriptor used
to handle this page.

The returned flags value reflects the MMU properties in the high-level of the MMU setup;
especially, the MAPP _USED and MAPP _MODIFIED bits do not correspond to the state of
the MMU hardware “U” and “M” bits, but just for the pre-selected value of these bits in case the
MuLib has to rebuild parts of the hardware level.

3.3 Context Locking

Since more than one Task could try to operate on the same Context at once, you are highly recom-
mended to “lock” the context before you proceed and modify its setup by SetProperties(). Even
though the MuLib itself keeps care that its data structures remain valid even in this situation, it
might be desirable to group Context operations and to protect them by granting exclusive access to
the Context. This is done by

struct MMUContext *ctx;

LockMMUContext (ctx) ;

After having modified the high-level of the Context by calling SetProperties(), the changes must
be loaded to the hardware. This step is similar to the MakeVPort() call of the graphics.library:
It translates the abstraction layer to the true hardware data. One single call is enough to proceed:

struct MMUContext *ctx;
BOOL result;

result = RebuildTree(ctx);

Like SetProperties(), this call may fail due to out of memory conditions. In this case, the hardware
layer of the MMU setup remains unchanged, but all the modifications in the software layer remain
active, and remain marked as “changed”. Hence, if RebuildTree() is called again later, and if more
memory is available, your changes will become active. Once you're done, you should unlock the
Context again to allow other tasks to modify it:

struct MMUContext *ctx;

UnlockMMUContext (ctx) ;

Since SetProperties() and even RebuildTree() may fail, you are in trouble in case the system is
low on memory since it would leave you alone with a half-correct MMU setup which can’t be com-
pleted, and, in worst case, can’t even restored to the original setup since a second SetProperties()
call used to restore the original settings could fail as well. Luckily, the MuLib provides functions to
help you in this situation. The idea is to first make a backup of the current MMU setup, using

struct MMUContext *ctx;
struct MinList *ctxl;

ctx1l=GetMapping(ctx) ;

Working on Contexts 11

then to run all modifications, finally to call RebuildTree(). If something goes wrong, one single
call is enough to restore the orignal MMU setup, namely

struct MMUContext *ctx;
struct MinList *ctxl;

SetPropertylList(ctx,ctxl);

Unlike SetProperties(), the SetPropertyList() call cannot fail. It uses the backup made before
to restore the MMU setup. It cannot be used, though, to restore a MMU setup which has been
translated into a true hardware table already and which is loaded into the MMU, even if you call
RebuildTree() explicitly after SetPropertyList(). The reason is that the high-level functions
keep so called “dirty bits” of the MMU table. These bits are never visible from the outside, but are
set for each memory region you modified with SetProperties(), and cleared on a RebuildTree().
This allows the rather slow RebuildTree() call only to re-compute the parts of the MMU table
which have been modified; re-computing the full MMU setup would take too much time and would
drastically reduce performance. However, SetPropertyList() does not only restore the high-level
MMU setup, it also restores the dirty bits. To be more specific, calling RebuildTree() after
SetPropertyList() would not notice that a complete restauration of the MMU setup has taken
place, and would leave the low-level MMU setup alone.
Finally, regardless of whether you made use of the backup or not, it must be released by

struct Context *ctx;
struct MinList *ctxl;

ReleaseMapping(ctx,ctxl);

You can use a backup only once for one single SetPropertyList() call. Afterwards, the backup
will be “empty” and cannot be used anymore. Nevertheless — regardless of whether SetProper-
tyList() was called or not, you have to tell the MuLib that you do not require it anymore. This is
done by ReleaseMapping().

To conclude, a proper and safe MMU modification, including proper error handling, would look

like this:

struct MMUContext *ctx;
struct MinList *ctxl;
BOOL fine = TRUE;

/* Lock the context */
LockMMUContext (ctx) ;

/* make a backup */
ctxl=GetMapping(ctx);

/* got a backup? */
if (ctxl) |

/* Now run all the modifications */
fine = SetProperties(ctx,...);

if (fine) {

/* etc, etc... */

fine = SetProperties(ctx,...);
¥

12 The Mulib Programmer’s Manual

/* and finally, build the hardware table */
if (fine) {

fine = RebuildTree(ctx);

¥

/* Uhoh, something went wrong! */

if ('fine) {
/* Restore the previous setup */
SetPropertylList(ctx,ctxl);

¥

} else fine = FALSE;

UnlockMMUContext (ctx) ;
ReleaseMapping(ctx,ctxl);

3.4 Sharing of MMU Tables
The special property MAPP SHARED signals the MuLib that the property of this specific

memory range comes from another, the parent context. To be able to use this property, your con-
text must have been created with the tag MCXTAG SHARE, cf. section 7. The properties
are then borrowed from the parent, and updated whenever the parent gets updated, i.e. whenever
RebuildTree() is called on the parent context. However, this property sharing works only automa-
tically for the high-level interface, low-level calls discussed in section 4 are not covered by table sha-
ring. Especially, the low-level call SetPageProperty() of a parent page does not modify any child
contexts, and the low-level SetPageProperty() simply ignores the MAPP SHARED attribute
at all. Similar, GetPageProperties() will not return any useful MAPP SHARED attribute
to indicate page sharing. This is because even though the MuLib shares the properties between
the contexts, it does not share the raw hardware descriptors between the different contexts. It only
propagades high-level flags from the parent to the child whenever necessary.

Another caveat about the MAPP SHARED property is that you must disable it explicitly
on your child context to dispatch from the parent, i.e. to enforce your own page settings for
your context. Hence, the mask parameter of the SetProperties() call should always include
MAPP_ SHARED or the resulting page settings might be very different from what you expect
— the MuLib will ignore your selection at all and will continue to use the parent’s properties. After
all, this is what MAPP SHARED is all about.

The MAPTAG SHAREMASK can be used to selectively alter only some flags of the pa-
rent context, but to carry over others. To give an example, a MAPTAG SHAREMASK
of "TMAPP COPYBACK sclectively disables the forwarding of the copyback-caching flag from
the parent to the child. A property flag of MAPP SHARED | MAPP COPYBACK will
enable, and a property flag of MAPP SHARED alone will disable copyback-caching, indepen-
dently of the parent settings. The default of the share mask is 70, i.e. all properties of the parent
will be carried over.

3.5 Modifying More Than One Context at Once

Please recall that the MuLib keeps user and supervisor accesses separate, and that each user Context
comes with a corresponding supervisor Context. This means specifically that you sometimes want
to modify two or more Contexts at once, typically the user Context and its supervisor Context. If
handled the naive way, several race conditions could result: For example, consider that your program
locks the user Context first, and then locks the supervisor Context. Assume further that another

Working on Contexts 13

program attempts to modify the two Contexts simultaneously, but locking the supervisor Context
first and the user Context later. This could yield to the classical “deadlock” situation where your
program keeps the user Context locked but can’t run on because the supervisor Context is obtained
by the second Task, and the second Task can’t continue because it tries to obtain the user Context
which is already locked by your task. Therefore, if you want to lock more than one Context at once,
you absolutely mustlock the complete Context list before you lock individual Contexts. This is done
by the following call:

LockContextList () ;

Nevertheless, you need to lock the individual Contexts afterwards. The Context list lock is released

by
UnlockContextList () ;

when you’re done. Both calls do not take any arguments.

A second problem is caused by the RebuildTree() call: If you want to compute the low-level
MMU setup for two Contexts, it might happen that the first RebuildTree() succeeds, but the
second call fails due to lack of memory; an attempt to restore the first tree could fail as well, ma-
king it impossible to restore the former setup. To help you in this situation, the MuLib provides
a function that rebuilds several MMU setups at once such that either all of them are rebuild suc-
cessfully, or none of them has been touched. This call comes in two forms, one parameter based
form RebuildTreesA() which takes a NULL-terminated array of Context pointers, and a stack
based call RebuildTrees() whose last argument is set to NULL, similar to a tag list. The last
form is conveniently used from high-level languages like C.

struct MMUContext *ctx,*sctx;
BOOL fine;

fine = RebuildTrees(ctx,sctx,NULL);

would, for example, rebuild two MMU setups at once. The following example code shows how to
modify safely the property flags for the public Context and its supervisor Context at once:

/*

* SetCacheMode: Modify the cache mode of the address range
"from" to "fromtsize-1" in both the
default context and the default supervisor
context.

"flags'" defines the new properties,
"mask" which bits are to be altered.

Returns a dos-type error code.

Taken from the "MuSetCacheMode'" sources, (c) Thomas Richter.

¥ OX K X X X X X X ¥

*
~

#include <exec/types.h>
#include <exec/lists.h>
#include <dos/dos.h>
#include <mmu/context.h>
#include <utility/tagitem.h>

14 The MulLib Programmer’s Manual

#include <proto/exec.h>
#include <proto/dos.h>
#include <proto/mmu.h>

int SetCacheMode(ULONG from,ULONG size,ULONG flags,ULONG mask)
{

struct MMUContext *ctx,*sctx; /* default context, supervisorcontext */
struct MinList *ctxl,*sctxl; /* backups */
ULONG psize; /* the page size */
int err;

ctx=DefaultContext(); /* get the default context */
sctx=SuperContext(ctx); /* get the supervisor context for this one */

psize=GetPageSize(ctx); /* get the page size */

/* Now check for proper alignment of the data passed in */
if (size & (psize-1)) {
Printf("The given size Ox%lx is not divisible "
"by the page size 0xJlx.\n",size,psize);
return ERROR_BAD_NUMBER;

if (from & (psize-1)) {
Printf("The given address 0x)lx is not divisible "
"by the page size 0xJlx.\n",from,psize);
return ERROR_BAD_NUMBER;

/*
** Page sizes of the user and the supervisor context are always
** identical.

*/

/* Lock first the context list, then the two contexts */
LockContextList () ;

LockMMUContext (ctx) ;

LockMMUContext (sctx) ;

err=ERROR_NO_FREE_STORE;
/* Make backups of the MMU setup */
if (ctxl=GetMapping(ctx)) {
if (sctxl=GetMapping(sctx)) {
err=0;
/* Set the flags in the user context */

if (!SetProperties(ctx,flags,mask,from,size,TAG_DONE)) {
err=ERROR_NO_FREE_STORE;

Working on Contexts

15

/* and just the same in the supervisor context */

if (!SetProperties(sctx,flags,mask,from,size,TAG_DONE)) {
err=ERROR_NO_FREE_STORE;

¥

if (err==0) {
/*
** If everything is fine so far, rebuild the trees
** to write this setup directly into the hardware
*/
if ('RebuildTrees(ctx,sctx,NULL)) {
err=ERROR_NO_FREE_STORE;

/%
** Uhoh, something went wrong!
¥ We better restore what we found before!

*/

if (err) {
SetPropertyList(ctx,ctxl);
SetPropertylList (sctx,sctxl);

}

/*

** Now release the backups. Even if we used them,
** this step *IS* required.

*/

ReleaseMapping(sctx,sctxl);

¥
ReleaseMapping(ctx,ctxl);

}

/* Unlock the contexts and the list */
UnlockMMUContext (sctx) ;
UnlockMMUContext (ctx) ;
UnlockContextList () ;

/* and say goodbye! */
return err;

3.6 Function Reference

Here’s again a quick function reference for all the calls introduced in the last section:

16 The MuLib Programmer’s Manual

Table 2: High Level MMU Tree Control Functions

‘ MulLib function Description
GetPageSize() Return the size of a MMU page in bytes
SetProperties() Define property flags for one or more pages
GetProperties() Return the property flags for one address
LockMMUContext() Lock a context from modification
UnlockMMUC Context() Release a context lock
AttemptLockMMUContext() Attempt to lock a context
LockContextList() Lock the list of contexts
UnlockContextList() Release the list lock
AttemptLockContextList() Attempt to lock the context list
RebuildTree() Build the low-level from the high-level data
RebuildTrees() Rebuild more than one tree at once
GetMapping() Make a backup of the MMU setup
ReleaseMapping)() Release a MMU setup
SetPropertyList() Replace the high-level setup by a backup

Working on Contexts

17

4 Low-level MMU Setup

High-level MuLib functions have the disadvantage that they cannot be called from interrupt or
supervisor code. Low level functions can, but because they are interrupt-callable, they provide no
locking mechanism. If some other Task decides to overwrite the low-level MMU table — let it be
by calling the high-level function RebuildTree() or by modifying the low-level directly — then
your changes are lost. However, there is at least a way to handle the first situation by means of
the so-called “page access exception” which will be described below. Another restriction is that
the low-level functions require a special preparation step, namely the MAPP _SINGLEPAGE
property flag must be set by means of the high-level functions, and the MMU tree must be rebuild
afterwards. Furthermore, the low level functions operate only at one page a time.

4.1 Defining Properties on the Low Level
The function

struct MMUContext *ctx;
ULONG flags,mask,page;
BOOL result;

result = SetPageProperties(ctX,flags,mask,page,TAG_DONE);

is the low-level equivalent of the SetProperties() call. All parameters and flags are identical,
except that no address range can be specified, but only a single page at a time will be modified.
Its logical address must be passed in as the page parameter. As for SetProperties(), it must be
aligned to a multiple of the page size or the call will fail. Accordingly,

struct MMUContext *ctx;
ULONG address,flags;

flags = GetPageProperties(ctx,address,TAG_DONE);

will read the flags from the low-level MMU descriptor. As a special case, the MAPP USED and
MAPP MODIFIED properties reflect the state of the “U” and “M” bits of the true hardware
descriptor and tell you whether this page has been accessed, or has been written to since the last
time you cleared this bit.

Low, but not Ground Level. The SetPageProperties() and GetPageProperties()
function both directly modify the MMU hardware descriptors, but especially the lat-
ter does not really read the hardware descriptor except for the MAPP _USED and
MAPP_ MODIFIED flags. This is because most of the property flags do not corre-
spond to features the MMU offers directly, but have to be emulated by software on some
or all of the members of the MC68K MMU series. This makes little difference as long as
you keep in mind that you must not hack on the MMU directly.

Both functions are interrupt-callable, and neither break a Forbid() nor a Disable() state. Hence,
it is safe to call these from critical code if you have to. Remember, however, that both calls require

the enabling of MAPP _SINGLEPAGE on the high level.

Low Level, no Sharing. The mmu.library does not provide sharing of low-level MMU
descriptors. If you modify a descriptor of the parent (shared) context by SetPagePro-
perties(), the corresponding changes are not forwarded to the childs (sharing contexts)
automatically. Even though the properties are shared from the parent, the MMU descrip-
tors are not, such that each child gets a separate MMU tree and uses its own separate de-
scriptors. If you read a page descriptor of a child whose properties have been shared from

18 The MuLib Programmer’s Manual

the parent, you find the MAPP _SHARED flag set; the remaining property flags are
the combination of the parent properties, filtered by the MAPTAG _SHAREMASK,
binary or’ed with the properties of the child.

4.2 Reading the Used and Modified Flags
The MMU keeps two special flags within its descriptors: The MAPP _USED flag that is set to

one whenever a program touches the page that is controlled by this descriptor, let it be by reading
or by writing; and the MAPP _MODIFIED flag, which gets set by every write access into the
page. Hence, MAPP MODIFIED indicates that the page contents have been altered.

Both flags are available as low-level and as high-level flags. i.e. they may be used as input flags to
SetProperties() and SetPageProperties(). However, the consequences are a bit different: You
cannot clear either flag with high-level calls. That is, even though if the mask parameter of SetPro-
perties() includes one of the two flags, the low level flag is at most set, but never cleared. Since the
aim of the two flags is to drive a virtual memory system and to determine which pages have been
touched and must be written out, the above rule prohibits inadequate modifications of important
state information that could cause data loss — clearing a MAPP _MODIFIED flag of a page
that was, indeed, modified would cause that a possible virtual memory system would not write back
the page to a swap device and hence, page modifications would be forgotten. Similar, GetProper-
ties() does not check the hardware MMU descriptors to find out about the MAPP _USED and
MAPP _MODIFIED states. If one of the two flags are returned as enabled, all you know is that
the next RebuildTree(s)() will set the corresponding bits in the hardware level descriptors, but if
the flags are cleared, no information about the hardware level has been obtained at all.

This is substancially different for the low-level calls. Both, SetPageProperties() and GetPa-
geProperties() have full control over both flags, and can set and clear these two. Hence, do not
play with the two bits uncarefully, it may damage a virtual memory system. Therefore, a virtual
memory system could read both flags, and then clear them after storing their state in an internal
database. Since is this a very frequent operation, the MuLib offers one specialized function that
performs both steps in one:

struct MMUContext *ctx;
ULONG lower,flags;

flags = GetPageUsedModified(ctx,lower);

This call returns the current MAPP USED and MAPP MODIFIED flags of the MMU page
that contains the address lower. It does not return any other flags. Furthermore, it clears both flags
in the MMU descriptor. Hence, the caller must store the result of this call in an internal database;
for example, it could increment used and modify-counters dependent on which flag is found active.

Altered, but not touched? Never ever attempt to set the MAPP MODIFIED flag
without the MAPP _USED flag. This indicates an illegal page state namely, a
state of a page that got modified without ever being touched. The MC68K MMUs react

rather allergic against this combination and may lock up the system.

4.3 Reading and Writing Indirect Descriptors

The functions SetPageProperties() and GetPageProperties() are much faster than a Re-
buildTree() call of the high-level functions, but are still not the optimum of speed. As long as you
have to handle small chunks of memory, indirect descriptors will work better, but offer less control
and are much more cumbersome to handle.

Low-level MMU Setup 19

Powerful, but Dangerous. One of the important drawbacks of indirect descriptors to keep
in mind is that they do not support DMA operation. Especially, never ever read or
write memory which is mapped by indirect descriptors by means of Os I/O functions
like Read(), Write() or DoIO(). The MuLib will not be able to handle some cache
related race-conditions for them. If you want to access them, make a copy of the page
contents first and run the I/O operations on the copy.

An indirect descriptor works as follows: Typically, the MuLib designs all the hardware descriptors
for the MMU itself, but for indirect descriptors, it will just place a reference in the MMU which
points to a descriptor you have to provide. By modifying your descriptor, you get direct control
over the MMU without much overhead. The descriptor is just a long word aligned long word or a
long word in a cache line aligned = 16 byte aligned array which is a multiple of cache lines long.
The latter, more restrictive alignment restriction holds in case you need to read back the descriptor
later using GetIndirect(). In principle, you could setup this descriptor yourself, but how this
must be done depends of course on the Amiga the code runs on. The MuLib helps you here by
offering functions to pre-calculate the required descriptors to abstract from the hardware. Second,
you could also place the descriptors in memory yourself, but due to some firmware features of several
members of the 68K series, you’d better not try this yourself. The MuLib knows very well the race
conditions that show up here, and knows how to handle them. Last but not least, you should also
avoid reading the descriptors yourself, just for the same reason: A simple read access to a hardware
MMU descriptor has some side-effects the MuLib has to keep in mind.

The first step in building an indirect descriptor is to allocate four bytes of memory, with proper
alignment. The Os function AllocMem() is fine as long as you only want to write descriptors
because it already offers long word alignment. For the more restrictive alignment requirement of
GetlIndirect(), you need to call the MuLib function

void *array;
ULONG size;

array = AllocAligned(size,MEMF_PUBLIC,16) ;

where size is divisible by 16 as well. More about this call is in the “Miscellaneous Functions” chapter.
The second step is to obtain the physical address of the logical address you got from Alloc-
Mem(). In most cases, both will be identically, but they need not to be. The function

struct MMUContext *ctx;
ULONG oldflags;
void *logical;

oldflags = Physicallocation(ctx,&logical,sizeof (ULONG));
/* "logical" contains now the physical address */

will do this for you. The third step is to pre-calculate all the descriptors you plan to make use of.
Since indirect descriptors are used for time-critical applications, this step avoids the overhead in the
later usage. The following call will do this:

struct MMUContext *ctx;
ULONG mask,oldflags;
ULONG address,flags,descriptor;

descriptor = BuildIndirect(ctx,address,
(flags & mask) | (oldflags & (“mask)));

20 The MulLib Programmer’s Manual

As always, this function requires the Context in the ctx argument. However, unlike SetPagePro-
perties() or SetProperties(), only a subset of the property bits are provided. Especially, there is
no MAPP _REMAPPED bit. This is handled differently. Instead of specifying a logical address
and — possibly — a different physical address, you need to specify the physical address itself. If
it is identical to the logical address, no re-mapping will occur, and if its not, the access will be re-
directed to the specified page. Again, this address must be a multiple of the page size. The physical
address should be obtained from the logical address by calling the PhysicalLocation() function,
as before, even in case you do not plan to re-map it. It is good to write software in a defensive way,
and it might happen that the memory you allocated in first place for the page has been re-mapped
already. Since BuildIndirect() does not offer a mask parameter, the above example call shows
how to mask in the desired flags yourself, and how to carry over parts of the old flags.
Depending on the hardware, only a subset of the following property bits is supported:

MAPP_ WRITEPROTECTED The page will be write protected. Writes to this area will cause

a segmentation fault.

MAPP USED The “U” bit of the descriptor will be set. The MMU will set this bit if the page

gets accessed in any way, too.

MAPP_ MODIFIED The “M” bit of the descriptor will be set. The MMU sets this bit, too,
on any write access that goes into this page. Due to a hardware feature of some of the 68K
MMUs, never ever set this bit together with MAPP _ WRITEPROTECTED and without
MAPP_USED or the MMU might hang.

MAPP INVALID The page will be marked as invalid. Accessing it will cause a segmentation
violation exception. However, note that the bit MAPP REPAIRABLE is not availa-
ble as property bit for indirect descriptors itself. You may, however, still ask the MuLib
for the repair service by setting the MAPP REPAIRABLE bit in the corresponding
MAPP _INDIRECT descriptor pointing to your descriptor. Even though indirect des-
criptors support the user data field to some extend, using MAPTAD USERDATA is
discouraged. This is because the descriptor will not be able to hold all 32 bits of your data,
some of the lower order bits will be required for the purposes of the MMU and are therefore
lost.

MAPP CACHEINHIBIT The corresponding memory page will not be kept in the CPU cache.

MAPP_ IMPRECISE Only available if MAPP CACHEINHIBIT is set as well, this tells
the 68060 MMU to react a bit sloppy on real bus errors. Ignored and read as zero by all other
MMUs.

MAPP NONSERIALIZED Again, this is only valid for MAPP CACHEINHIBIT pages,
and ignored and read as zero by all except the 68040 MMU. It tells the 68040 that it may

re-order accesses to the page to improve performance.

MAPP COPYBACK Enable the copy-back cache for cache-able pages. This bit is ignored and
read as zero by the 68030 and 68851 MMU.

MAPP_ USERPAGEO Set the “user page attribute 0”7 CPU output line on accesses of this page.
This is only available for the 68040 and 68060 and ignored and read as zero for the 68030 and
68851. There’s currently no Amiga hardware I know of which keeps care about this hardware
line anyhow.

MAPP_ USERPAGEL1 Sets the “user page attribute 1”7 CPU control line.

Low-level MMU Setup 21

MAPP _GLOBAL Sets the “global” bit of the descriptor, which is only available for the 68040
and the 68060. It is ignored and read as zero by the 68030 and the 68851. Setting this bit
means that certain specialized instructions will not flush this descriptor from the MMU cache.
The MuLib writes only descriptors with this bit cleared and does not use these instructions.
It will always flush descriptors independent of the G bit. There is currently little use of this
bit, so please leave it alone.

Passing in unsupported bits causes the MuLib to ignore these bits. Especially, if you read back
the descriptor later, you might find different properties than intended because of missing hardware
support. For example, if you set the MAPP COPYBACK bit on a 68030 based machine, and
you check the descriptor later, you’ll find this bit disabled. Especially, note that the following
properties are not supported:

MAPP_ REMAPPED is unsupported because you have to pass in the physical destination any-
how.

MAPP REPAIRABLE is unsupported. However, you still get the same service by setting this
bit “one level up” in the MAPP INDIRECT descriptor pointing to your new descriptor.

MAPP_ SUPERVISORONLY is unsupported. To emulate it, build separate descriptors for the
user and the supervisor Context and set the user descriptor to MAPP _INVALID.

MAPP_ ROM is unsupported. However, you are still able to get this feature if you set the
descriptor to MAPP _ WRITEPROTECTED and, additionally, set this bit “one level up”
in the MAPP INDIRECT descriptor.

The result code of BuildIndirect() is either a valid descriptor value, or the special result code
BAD_DESCRIPTOR defined in mmu/descriptor.h. Especially, NULL does not indicate an error.

Indirection’s Unmasked. You should have noticed that BuildIndirect() does not come
with a mask-type argument. Hence, it is not able to read and alter the current property
flags of the page you want to address. Instead, you’ve to read the property flags yourself,
for example by GetProperties() or PhysicalLocation(), and have to mask-in the
desired flags yourself. This step is important because it is not clear whether the memory
your page will be kept is is, for example, cache-able or not. Hence, you have to carry
the cache flags over, as in the example above.

The next step is to set your descriptor to one of the pre-calculated values. This is done by

ULONG *descriptor,address,value;

SetIndirect(descriptor,address,value);

which writes the pre-calculated value into your descriptor. This is also the function which should
be called to exchange descriptors rapidly. The descriptor argument is the physical location of the
hardware descriptor you allocated in the first step and whose physical address has been calculated
in the second step. The value argument is the descriptor value calculated by BuildIndirect()
before. Finally, address is the logical address which is covered by this descriptor. In case you want
to re-use the descriptor for more than one logical address, pass in -1L instead as a special case.

Keep Care about the Cache! Unlike the SetPageProperties() call, the SetIndirect()
function does not touch the CPU cache for the page you've modified, mainly for speed
reasons. Therefore, it is absolutely necessary to push back the cache of the page(s)
whose MMU setup is altered by SetIndirect(). The Exec functions CacheClearE()
and CacheClearU() will help you here. If you do not follow this rule, you might observe

22 The Mulib Programmer’s Manual

strange effects up to complete CPU lockups. The one and only exception to this rule is
that you do not need to push caches if you change the physical destination of the logical
page(s) addressed by the indirect descriptor you installed. This works even for the 68851
and the 68030 whose cache is addressed by logical rather than physical addresses. The
MuLib knows about this special case.

Finally, as a last step, you have to link in your descriptor into the MMU setup. This requi-
res calling either SetProperties() and RebuildTree() or SetPageProperties() with the pro-
perty flags bit MAPP INDIRECT set to one and the physical address of your descriptor as
MAPTAG DESCRIPTOR tag item. You may also add the MAPP REPAIRABLE and
MAPP ROM bits as mentioned in the list above. They need to be set here and not in your
descriptor. The MMU will now use your new descriptor, and you're able to re-define the descriptor
very rapidly with the SetIndirect() call.

In case you want to alter more than one indirect descriptor at a time, the MuLib offers a function
for re-defining a complete array of descriptors at once. This function, SetIndirectArray() is
typically faster than calling SetIndirect() in a loop. Its synopsis is as follows:

ULONG *descriptors,*values,num;

SetIndirectArray (descriptors ,values,num) ;

The first argument, descriptors, points to the physical base address of the indirect descriptors to
be filled in. Note that you must have ensured that this array is really a continuous array of physical
addresses, i.e. it is not possible that this array, even though a continuous range of logical addresses,
is split into several non-adjacent physical memory pages. The PhysicalLocation() function is
able to check this, see the “DMA Support Functions” chapter for more information about this call.
For fragmented memory models, you have to call SetIndirect Array() several times, once for each
fragment.

The values array points to a ULONG array of the MMU flags that should be filled in, one
ULONG for each descriptor. The SetIndirectArray() function will, “morally speaking”, copy
the contents of this array to the first array, but considering the caveats when modifying MMU
descriptors. The last argument is the number of descriptors to be set and hence the size of both
arrays. Passing zero here is allowed and is a no-op.

As for SetIndirect(), proper cache management is up to yourself. Hence, if you alter the
cache modes of some memory pages, e.g. by changing them from MAPP COPYBACK to
MAPP CACHEINHIBIT, it is up to you to push back the CPU caches by means of Cache-

ClearU() or CacheClearE().
Finally, to read an indirect descriptor, use

struct MMUContext *xctx;
ULONG *descriptor;
struct AbstractDescriptor adt;

GetIndirect(ctx,&adt,descriptor);

The ctx argument is the Context, as always, and descriptor is the physical address of the descriptor
to be read. The adt structure need not to be initialized. It is filled in by the call as follows:

struct AbstractDescriptor { /* defined in mmu/descriptor.h */
ULONG atd_Pointer;
ULONG atd_Properties;
UWORD atd_LowerLimit;
UWORD atd_UpperLimit;

Low-level MMU Setup 23

UBYTE atd_ThisType;

UBYTE atd_NextType;

UWORD atd_reserved;
s

The adt Pointer ficld is either the physical address the accesses to the page his descriptor is
installed for are redirected to, or the user data if this descriptor is of invalid type. Note that
providing user data for invalid indirect descriptors is discouraged because the MuLib will not be
able to preserve all 32 bits of your data. Otherwise, the adt Pointer component will be the same
address that was passed in as physical destination to BuildIndirect().

atd Properties is the set of property flags read from the descriptor. This need not to be
identical to the properties setup by BuildIndirect(), for two reasons: First, the MMU sets the
“U” and “M” bits as soon as any access or a write access happens to the page or pages handled by
the descriptor. Second, not all MMUs support all properties. Unavailable properties are ignored by
BuildIndirect(), and read as zero by this function.

Please leave all other fields alone, they are not documented and should not be read, and please
do not try to read the descriptor yourself. First, it is hardware dependent, and second, you would
need to take care about some hardware features and side-effects.

Beware of Oddities! The alignment rules for indirect descriptors might seem strange in-
deed. As long as you do not use GetIndirect(), long word alignment is good enough.
Since AllocMem() guarantees even alignment to quad words, ordinary Exec memory
allocations will suffer. However, special cache related considerations when reading the
descriptors require that they do not share cache lines with ordinary program code or
data. Therefore, if you allocate memory for descriptors and you suppose to call GetIn-
direct() on them, make sure that you allocate a multiple of the cache line size, which is
16 bytes, and make sure that the memory block you allocated is aligned to a cache line
boundary. Hence, the MuLib function AllocAligned() is required here. When alloca-
ting a complete array of descriptors, each individual descriptor in this array need not to
be — and will not be — aligned, but the array boundaries have to. Therefore, round the
array size up to the next multiple of 16 bytes, and pass 16 as alignment parameter to
AllocAligned(). Not following this guideline might appear to work most of the time,
but GetIndirect() may return improper data and certain “surprise moments” may show
up. The SetIndirect() calls are not touched by this problem.

The following example program shows how to use indirect descriptors:

[3k sk ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok 3 ok ok ok ok K ok ok ok ok ok K K o ok ok o ok ok ok Kk ok ok K ok ok ok Kk ok Kok K

** IndirectTest *k
*x ok
** Test indirect page descriptors of the MuLib *k
** Release 1.01 *k
*x 3k
** (c) 19.03.2000 Thomas Richter *%

ok sk ok ok ok ok ok ok ok ok ok ok ok oKk ok ok ok ok ok ok ok K ok ok ok ok sk ok ok ok ok sk ok sk kR kK ok sk ok sk kR ok ko ok ok /

/*
* Compile and link without startup code.

*/
/* Includes */

#include <exec/types.h>
#include <exec/memory.h>

24 The Mulib Programmer's Manual

#include <dos/dos.h>
#include <mmu/context.h>

#include <mmu/mmutags‘h>

#include <mmu/descriptor‘h>

#include <proto/exec.h>
#include <proto/dos.h>
#include <proto/mmu.h>

#include <string.h>

/* Protos */

int __saveds main(void);
int RunTests(void);
void DumpData(UBYTE *src,ULONG size);

/* Statics */

char version[]="$VER: IndirectTest 1.01 (19.03.2000) (c) THOR";

struct ExecBase *SysBase;
struct DosLibrary *D0SBase;
struct MMUBase *MMUBase;

/* main */

int __saveds main(void)

{

int rc=25;

/*

** Since we want to link without startup code,

** we need to open the system libraries here...

*/

SysBase = *((struct ExecBase **)(4L));

/*

** (Open DOS and MMU

*k /

if (DOSBase = (struct DosLibrary *)0OpenLibrary('dos.library",37L)) {

if (MMUBase = (struct MMUBase *)OpenLibrary("mmu.library",42L))
rc = RunTests();

CloselLibrary((struct Library *)MMUBase);
} else {
Printf("IndirectTest failed: This program "
"requires the mmu.library V42 or better.\n");
rc = 10;

/%

** Everything above 64 is a system

Low-level MMU Setup

25

** error code we print over the console.

*/

if (rc>64) {
PrintFault ((LONG)rc,"IndirectTest failed");
rc = 10;

}

Closelibrary((struct Library #*)DOSBase);

return rc;

/* RunTests */

int RunTests(void)

{

struct MMUContext *xctx;
struct MinList *ctxl;
ULONG pagesize;

ULONG *descriptor,*descriptorp;
ULONG values[2];

ULONG props[2];

UBYTE *page,*pagepl[2];
int rc=25;

/*

** Get the context we’re currently using
** and its page size

** furthermore, allocate a page.

*/
ctx = CurrentContext (NULL) ;
pagesize = GetPageSize(ctx);
page = AllocAligned(pagesize*2,
MEMF _PUBLIC|MEMF_CLEAR,pagesize) ;
if (page) {
/*

** Now allocate memory for the descriptor

** this must be long-word aligned, hence

** an AllocMem is fine here.

** However, we need to know the physical location

** of the descriptor.

*/

descriptor = AllocMem(sizeof (ULONG) ,MEMF_PUBLIC) ;

if (descriptor) {

/%

26 The MulLib Programmer’s Manual

** Compute physical locations

** We do not assume that Physicallocation()

** truncates the address. All values are

x* long/page aligned longs/pages, hence never cross a
** page boundary.

*/

descriptorp = descriptor;
Physicallocation(ctx, (void #**)&descriptorp,&pagesize);

/* And now for the pages */

pagep[0] = page;

props[0] = PhysicalLocation(ctx, (void **)&pagepl[0],&pagesize);
pagep[1] = pagetpagesize;

props[1] = PhysicalLocation(ctx, (void **)&pagepl[l],&pagesize);

if (pagepl0] && pagepl[1] && descriptorp) {

/*
** Lock the context and make a backup of it.
*k

*/
LockMMUContext (ctx) ;

if (ctxl=GetMapping(ctx)) {

/*

** Pre-calculate the values for the descriptors.

** The first descriptor maps the page to its TRUE physical
** location, the second one to the ROM, write-protecting
*k it.

** Note that we need to use the physical addresses here.
*ok

** MAPP_ROM protection must be archived by setting this

** property bit '"one level up".

*k

** We furthermore set USED and MODIFIED to avoid unnecessary
** MMU writebacks, and transfer the old properties back

** into the descriptor properties

*k

** Note that this call returns BAD_DESCRIPTOR in case

** of an error, not NULL.

*/

values[0] BuildIndirect(ctx, (ULONG) (pagep[0]),
props[0] |MAPP_USED |MAPP_MODIFIED);
values[1] = BuildIndirect(ctx, (ULONG) (pagep[1]),

props[1] IMAPP_USED |MAPP_WRITEPROTECTED) ;

Low-level MMU Setup 27

28

if

/%
*%
*%
*%
*%
*%

*/
Se

/%
*k
*k
*k
*k
*k
*k
*k

*/

if

i

((values[0] !'= BAD_DESCRIPTOR) &&
(values[1] != BAD_DESCRIPTOR)) {

Install the descriptor

The first parameter is the physical address
of the descriptor, the second the

logical address of the page

and the last the descriptor to install

tIndirect(descriptorp, (ULONG)page,values[0]);

Now install this descriptor

We set this to MAPP_ROM because we want emulated
ROM writeprotection.

This is ignored if the descriptor itself is

not write protected anyhow.

We need the physical location of the descriptor
here.

(SetProperties(ctx,MAPP_ROM|MAPP_INDIRECT,
MAPP_ROM|MAPP_INDIRECT,
(ULONG) page,pagesize,
MAPTAG_DESCRIPTOR,descriptorp,
TAG_DONE)) {

f (RebuildTree(ctx)) {